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1 Overview

Fino is a free and open source tool released under the terms of the GPLv3+ that uses the
finite-element method to solve

• steady or quasistatic thermo-mechanical problems, or

• steady or transient heat conduction problems, or

• modal analysis problems.

Updates, examples, V&V cases and full reference: https://www.seamplex.com/fino

https://www.seamplex.com/fino
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2 Running fino

2.1 Invocation

The format for running the fino program is:

fino [options] inputfile [optional_extra_arguments]...

The fino executable supports the following options:

-d or --debug
Start in debug mode

--node-debug

Ignore standard input, avoid debug mode

-l or --list
List defined symbols and exit

-h or --help
Display this help and exit

-i or --info
Display detailed code information and exit

-v or --version
Display version information and exit

--mumps

use the MUMPS direct solver (if available)

--progress

print ASCII progress bars for build, step and stress steps

--petsc <option[=argument]>

Pass -option argument directly to PETSc/SLEPc, e.g.

$ fino tensile-test.fin --petsc ksp_view

The option --petsc is provided to avoid clashes with PETSc’ non-POSIX ar-
guments. Note that options are passed directly to PETSc/SLEPc if they do not
clash with Fino/wasora. The same command as above could have been called
as

$ fino tensile-test.fin -ksp_view

Input file instructions are read from standard input if a dash - is passed as input-file.

Fino accepts optional extra arguments which are then verbatimly replaced in the input
file as $1, $2, and so on. So for example if an input file has a line like this

MESH_FILE $1.msh

[...]

Then two different meshes called one.msh and two.msh can successively be used in two
runs with the same input file by calling Fino as

fino input.fin one

fino input.fin two
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2.2 Example input files

2.2.1 Minimum working example

The following is a MWE input file for Fino that reads a Gmsh-generated .msh file, solves a
linear elastic problem and wriets the results in a .vtk file which can be post-processed by
Paraview:
MESH FILE_PATH tensile-test.msh # mesh file in Gmsh format

E = 200e3 # [ MPa ] Young modulus ~ 200 GPa

nu = 0.3 # Poisson ratio

# boundary conditions ("left" and "right" come from the names in the mesh)

PHYSICAL_GROUP left BC fixed

PHYSICAL_GROUP right BC Fx=1e4 # [ N ] load in x+

FINO_STEP # solve

# write results (Von Mises, principal and displacements) in a VTK file

MESH_POST FILE_PATH tensile-mwe.vtk sigma sigma1 sigma2 sigma3 VECTOR u v w

2.2.2 Extended annotated example

The example can be extended to give more information as the following annotated input
shows:
# tensile test example for Fino, see https://caeplex.com/p/41dd1

MESH FILE_PATH tensile-test.msh # mesh file in Gmsh format (either version 2.2 or 4.x)

# uniform properties given as scalar variables

E = 200e3 # [ MPa ] Young modulus = 200 GPa

nu = 0.3 # Poisson’s ratio

# boundary conditions ("left" and "right" come from the names in the mesh)

PHYSICAL_GROUP left BC fixed # fixed end

PHYSICAL_GROUP right BC Fx=1e4 # [ N ] load in x+

FINO_SOLVER PROGRESS_ASCII # print ascii progress bars (optional)

# FINO_SOLVER KSP mumps # try to use mumps (if it is not available gamg+gmres is used)

FINO_STEP # solve

# compute reaction force at fixed end

FINO_REACTION PHYSICAL_GROUP left RESULT R

# write results (Von Mises, principal and displacements) in a VTK file

MESH_POST FILE_PATH tensile-test.vtk delta_sigma sigma sigma1 sigma2 sigma3 VECTOR u v w

# print some results (otherwise output will be null)

PRINT SEP " " "displ_max =" %.3f displ_max "mm"

PRINT SEP " " "sigma_max = (" %.1f sigma_max "±" delta_sigma_max ") MPa"

PRINT SEP " " "principal1 at center = (" %.5f sigma1(0,0,0) "±" delta_sigma(0,0,0) ") MPa"

PRINT SEP " " "reaction = [" %.3e R "] Newtons"

PRINT FILE_PATH tensile-sigma.dat %.0f sigma(0,0,0)



5

3 Test case

This first case serves as a basic example to answer the first validation question: does Fino
do what a FEA program is supposed to do? It also illustrates its design basis and the
philosophy (https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.
html) behind its implementation. A quotation from Eric Raymond (http://www.catb.
org/esr/)’s The Art of Unix Programming (http://www.catb.org/esr/writings/
taoup/) helps to illustrate this idea:

Doug McIlroy (https: / / en . wikipedia . org / wiki / Douglas_McIlroy),
the inventor of Unix pipes (https: / / en . wikipedia . org / wiki /

Pipeline_%28Unix%29) and one of the founders of the Unix tradition
(https://en.wikipedia.org/wiki/Unix), had this to say at the time:

1. Make each program do one thing well. To do a new job, build afresh rather
than complicate old programs by adding new features.

2. Expect the output of every program to become the input to another, as
yet unknown, program. Don’t clutter output with extraneous informa-
tion. Avoid stringently columnar or binary input formats. Don’t insist on
interactive input.

[. . . ]

He later summarized it this way (quoted in “A Quarter Century of Unix” in
1994):

• This is the Unix philosophy: Write programs that do one thing and do it
well. Write programs to work together. Write programs to handle text
streams, because that is a universal interface.

Keep in mind that even though the quotes above and many FEA programs that are still
mainstream today date both from the early 1970s, fifty years later they still

• Do not make just only one thing well.

• Do complicate old programs by adding new features.

• Do not expect the their output to become the input to another.

• Do clutter output with extraneous information.

• Do use stringently columnar and/or binary input (and output!) formats.

• Do insist on interactive output.

A further note is that not only is Fino both free (https: / / www . gnu . org /

philosophy/free-sw.en.html) and open-source (https://opensource.com/resources/
what-open-source) software but it also is designed to connect and to work with (rule of
composition (https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.
html#id2877684)) other free and open source software, like Gmsh (http://gmsh.info/),
ParaView (https://www.paraview.org/), Gnuplot (http://gnuplot.info/), Pyxplot
(http://www.pyxplot.org.uk/), Pandoc (https://pandoc.org/), TeX (https://
tug.org/), and many others, including of course the operating system GNU (https://
www.gnu.org/)/Linux (https://www.kernel.org/). In particular, this report has been
created from scratch using free and open source software only.

https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html
http://www.catb.org/esr/
http://www.catb.org/esr/
http://www.catb.org/esr/writings/taoup/
http://www.catb.org/esr/writings/taoup/
https://en.wikipedia.org/wiki/Douglas_McIlroy
https://en.wikipedia.org/wiki/Pipeline_%28Unix%29
https://en.wikipedia.org/wiki/Pipeline_%28Unix%29
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix
https://www.gnu.org/philosophy/free-sw.en.html
https://www.gnu.org/philosophy/free-sw.en.html
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2877684
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2877684
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2877684
http://gmsh.info/
https://www.paraview.org/
http://gnuplot.info/
http://www.pyxplot.org.uk/
http://www.pyxplot.org.uk/
https://pandoc.org/
https://tug.org/
https://tug.org/
https://www.gnu.org/
https://www.gnu.org/
https://www.kernel.org/
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Fino also makes use of high-quality free and open source mathematical libraries which
contain numerical methods designed by mathematicians and programmed by professional
programmers, such as GNU Scientific Library (https://www.gnu.org/software/gsl/),
PETSc (https://www.mcs.anl.gov/petsc/), SLEPc (http://slepc.upv.es/) (optional)
and all its respective dependencies. This way, Fino bounds its scope to do only one thing and
to do it well: to build and solve finite-element formulations of thermo-mechanical problems.
And it does so on high grounds, both

1. ethical: since it is free software (https: / / www . gnu . org / philosophy /

open-source-misses-the-point.en.html), all users can

0. run,

1. share,

2. modify, and/or

3. re-share their modifications.

If a user cannot read or write code to make Fino suit her needs, at least she has the
freedom to hire someone to do it for her, and

2. technological: since it is open source (http://www.catb.org/~esr/writings/
cathedral-bazaar/cathedral-bazaar/), advanced users can detect and correct bugs
and even improve the algorithms. all bugs are shallow.

The reader is encouraged to consider and to evaluate the differences (both advantages
and disadvantages) between the approach proposed in this work with traditional thermo-
mechanical FEA software. The Git (https://git-scm.com/) repository containing Fino’s
source code can be found at https://github.com/seamplex/fino.

3.1 Problem description

A tensile test specimen of nominal cross-sectional area A = 20 mm × 5 mm = 100 mm2 is
fully fixed on one end (magenta surface) and a tensile load of Fx = 10 kN is applied at the
other end (green surface). The Young modulus is E = 200 GPa and the Poisson’s ratio is
ν = 0.3.

https://www.gnu.org/software/gsl/
https://www.mcs.anl.gov/petsc/
http://slepc.upv.es/
https://www.gnu.org/philosophy/open-source-misses-the-point.en.html
https://www.gnu.org/philosophy/open-source-misses-the-point.en.html
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
https://en.wikipedia.org/wiki/Linus%27s_law
https://git-scm.com/
https://github.com/seamplex/fino
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Figure 1: Tensile test specimen CAD from CAEplex https://caeplex.com/p/41dd1

3.1.1 Expected results

The displacements and stresses distribution within the geometry are to be obtained. Elon-
gation along the x axis and a mild contraction in y (and even milder in z) are expected. The
normal tension at the center of the specimen is to be checked to the theoretical solution
σx = Fx/A and the reaction at the fixed end should balance the external load ~F at the
opposite face. Stress concentrations are expected to occur at sharp corners of the coupon.

3.2 Geometry and mesh

Following the general rule of performing only one thing well, and the particular rules of
composition (https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.
html#id2877684) and parsimony (https://homepage.cs.uri.edu/~thenry/resources/
unix_art/ch01s06.html#id2878022), the generation of the set of nodes and elements
required to perform a thermo-mechanical computation using the finite element method is
outside of Fino’s scope. The finite-element mesh is an input to Fino.

In the particular case of the tensile test problem, the geometry is given as a STEP
file (tensile-test-specimen.step). It is meshed by Gmsh (http://gmsh.info/) (or,
following the rule of diversity (https://homepage.cs.uri.edu/~thenry/resources/
unix_art/ch01s06.html#id2879078), any other meshing tool which can write meshes
in MSH format (http://gmsh.info/doc/texinfo/gmsh.html#MSH-file-format) keep-
ing information about physical groups (http://gmsh.info/doc/texinfo/gmsh.html#
Elementary-entities-vs-physical-groups)). A suitable mesh (fig. 2) can be created
using the following tensile-test.geo file:
Merge "tensile-test-specimen.step"; // read the step file

Mesh.CharacteristicLengthMax = 1.5; // set the max element size lc

Mesh.ElementOrder = 2; // ask for second-order elements

// define physical groups for BCs and materials

// the name in the LHS has to appear in the Fino input

https://caeplex.com/p/41dd1
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2877684
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2877684
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2878022
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2878022
tensile-test-specimen.step
tensile-test-specimen.step
http://gmsh.info/
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2879078
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2879078
http://gmsh.info/doc/texinfo/gmsh.html#MSH-file-format
http://gmsh.info/doc/texinfo/gmsh.html#Elementary-entities-vs-physical-groups
http://gmsh.info/doc/texinfo/gmsh.html#Elementary-entities-vs-physical-groups
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// the number in the RHS is the numerical id of the entity in the CAD file

Physical Surface ("left") = {1}; // left face, to be fixed

Physical Surface ("right") = {7}; // right face, will hold the load

Physical Volume ("bulk") = {1}; // bulk material elements

Out of the six lines, the first three are used to read the CAD file, to set the characteristic
element size `c = 1.5 mm and to ask for second-order 10-noded tetrahedra (by default Gmsh
creates first-order 4-node tetrahedra). The last three lines define one physical group each:

• geometrical surface #1 as physical surface “left,” which will be set as fixed in the Fino
input file,

• geometrical surface #7 as physical surface “right,” which will hold the load defined in
the Fino input file, and

• the volumetric bulk material elements in geometrical volume #1.

8
7

9

6
5

10

13

14

XY
Z

4

11
12

3
1

2

a

b

Figure 2: Tensile test specimen CAD, its geometrical entities and the resulting mesh.. a
— Numerical ids of the surfaces in the original CAD., b — Three-dimensional mesh with
uniform `c = 1.5 mm and ∼ 50k nodes. In general, multi-solid problems need to have
different physical volumes in order to Fino to be able to set different mechanical properties.
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Even though this simple problem has a single solid, a physical volumetric group is needed
in order to Gmsh to write the volumetric elements (i.e. tetrahedra) in the output MSH file
(tensile-test.msh).

The usage of physical groups (http: / / gmsh . info / doc / texinfo / gmsh . html #
Elementary-entities-vs-physical-groups) to define boundary conditions follows the
rule of representation (https://homepage.cs.uri.edu/~thenry/resources/unix_art/
ch01s06 . html # id2878263) as it folds knowledge into data instead of focusing on
algorithmically setting loads on individual nodes. It also allows for extensibility (https://
homepage . cs . uri . edu / ~thenry / resources / unix_art / ch01s06 . html # id2879112)
since, for example, a mesh with many physical groups can be used for both a tensile and
a bending cases where the first uses some groups and the latter other groups bringing
clarity (https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#
id2877610) to the game.

3.3 Input file

Fino reads a plain-text input file—which in turns also reads the mesh generated above—
that defines the problem, asks Fino to solve it and writes whatever output is needed. It is a
syntactically-sweetened (http://en.wikipedia.org/wiki/Syntactic_sugar) way to ask
the computer to perform the actual computation (which is what computers do). This input
file, as illustrated in the example below lives somewhere near the English language so a per-
son can read through it from the top down to the bottom and more or less understand what
is going on (rule of least surprise (https://homepage.cs.uri.edu/~thenry/resources/
unix_art/ch01s06.html#id2878339)). Yet in the extreme case that the complexity of the
problem asks for, the input file could be machine-generated by a script or a macro (rule
of generation (https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.
html#id2878742)). Or if the circumstances call for an actual graphical interface for properly
processing (both pre and post) the problem, the input file could be created by a separate
cooperating front-end such as CAEplex (https://www.caeplex.com) in fig. 1 above (rule
of separation (https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.
html#id2877777)). In any case, the input files—both for Gmsh and for Fino—can be
tracked with Git (https://en.wikipedia.org/wiki/Git) in order to increase traceability
and repeatability of engineering computations. This is not true for most of the other FEA
tools avaialable today, particularly the ones that do not follow McIlroy’s recommendations
above.

Given that the problem is relatively simple, following the rule of simplicity (https://
homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2877917), the
input file tensile-test.fin (tensile-test.fin) ought to be also simple. Other cases
with more complexity such as parametric runs (such as case link(085-cantilever-cylinder)) or
those that need to read results from other programs (such as case link(075-fixed-compressed-
cylinder)) in order to compare results might lead to more complex input files.

# tensile test example for Fino, see https://caeplex.com/p/41dd1

MESH FILE_PATH tensile-test.msh # mesh file in Gmsh format (either version 2.2 or 4.x)

# uniform properties given as scalar variables

E = 200e3 # [ MPa ] Young modulus = 200 GPa

nu = 0.3 # Poisson’s ratio

tensile-test.msh
tensile-test.msh
http://gmsh.info/doc/texinfo/gmsh.html#Elementary-entities-vs-physical-groups
http://gmsh.info/doc/texinfo/gmsh.html#Elementary-entities-vs-physical-groups
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2878263
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2878263
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2879112
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2879112
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2877610
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2877610
http://en.wikipedia.org/wiki/Syntactic_sugar
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2878339
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2878339
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2878742
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2878742
https://www.caeplex.com
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2877777
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2877777
https://en.wikipedia.org/wiki/Git
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2877917
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2877917
tensile-test.fin
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# boundary conditions ("left" and "right" come from the names in the mesh)

PHYSICAL_GROUP left BC fixed # fixed end

PHYSICAL_GROUP right BC Fx=1e4 # [ N ] load in x+

FINO_SOLVER PROGRESS_ASCII # print ascii progress bars (optional)

FINO_STEP # solve

# compute reaction force at fixed end

FINO_REACTION PHYSICAL_GROUP left RESULT R

# write results (Von Mises, principal and displacements) in a VTK file

MESH_POST FILE_PATH tensile-test.vtk sigma sigma1 sigma2 sigma3 VECTOR u v w

# print some results (otherwise output will be null)

PRINT "displ_max = " %.3f displ_max "mm"

PRINT "sigma_max = " %.1f sigma_max "MPa"

PRINT "principal1 at center = " %.8f sigma1(0,0,0) "MPa"

PRINT "reaction = [" %.3e R "] Newtons"

PRINT FILE_PATH tensile-sigma.dat %.0f sigma(0,0,0)

• The mesh tensile-test.msh (tensile-test . msh) is the output of Gmsh
when invoked with the input tensile-test.geo (tensile-test . geo) above.
It can be either version 4.1 (http: / / gmsh . info / doc / texinfo / gmsh . html #
MSH-file-format) or 2.2 (http: / / gmsh . info / doc / texinfo / gmsh . html #

MSH-file-format-version-2-_0028Legacy_0029).

• The mechanical properties, namely the Young modulus E and the Poisson’s ratio ν are
uniform in space. Therefore, they can be simply set using special variables E and nu.

• Boundary conditions are set by referring to the physical surfaces defined in the mesh.
The keyword fixed is a shortcut for setting the individual displacements in each di-
rection u=0, v=0 and w=0.

• An explicit location within the logical flow of the input file hast to be given where Fino
ought to actually solve the problem with the keyword FINO_STEP. It should be after
defining the material properties and the boundary conditions and before computing
secondary results (such as the reactions) and asking for outputs.

• The reaction in the physical group “left” is computed after the problem is solved (i.e.
after FINO_STEP) and the result is stored in a vector named R of size three. There is
nothing special about the name R, it could have been any other valid identifier name.

• A post-processing output file (tensile-test . vtk) in format VTK (https: / /
lorensen.github.io/VTKExamples/site/VTKFileFormats/) is created, containing:

• The von Mises stress sigma (σ) as an scalar field

• The three principal stresses sigma1, sigma_2 and sigma_3 (σ1, σ2 and σ3 respec-
tively) as three scalar fields

• The displacement vector ~u = [u, v, w] as a three-dimensional vector field

• Some results are printed to the terminal (i.e. the standard output (https://en.
wikipedia.org/wiki/Standard_streams#Standard_output_(stdout))) to summa-
rize the run. Note that

1. The actual output (including post-processing files) is 100% defined by the user,
and

tensile-test.msh
tensile-test.geo
http://gmsh.info/doc/texinfo/gmsh.html#MSH-file-format
http://gmsh.info/doc/texinfo/gmsh.html#MSH-file-format
http://gmsh.info/doc/texinfo/gmsh.html#MSH-file-format-version-2-_0028Legacy_0029
http://gmsh.info/doc/texinfo/gmsh.html#MSH-file-format-version-2-_0028Legacy_0029
tensile-test.vtk
https://lorensen.github.io/VTKExamples/site/VTKFileFormats/
https://lorensen.github.io/VTKExamples/site/VTKFileFormats/
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
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2. If no output instructions are given in the input file (PRINT, MESH_POST, etc.) then
no output will be obtained.

Not only do these two facts follow the rule of silence (https://homepage.cs.uri.edu/
~thenry/resources/unix_art/ch01s06.html#id2878450) but they also embrace the
rule of economy (https://homepage.cs.uri.edu/~thenry/resources/unix_art/
ch01s06.html#id2878666): the time needed for the user to find and process a single
result in a soup of megabytes of a cluttered output file far outweighs the cost of running
a computation from scratch with the needed result as the only output.

• Finally, the von Mises stress σ(0, 0, 0) evaluated at the origin is written to an
ASCII (https: / / en . wikipedia . org / wiki / ASCII) file tensile-sigma.dat

(tensile-sigma.dat) rounded to the nearest integer (in MPa). This is used to test
the outcome of Fino’s self-tests using the make check target (https://www.gnu.
org/software/make/manual/make.html#Standard-Targets) in an automated way
(https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#
id2878742). Note that there is no need to have an actual node at ~x = (0, 0, 0) since
Fino (actually wasora (https://www.seamplex.com/wasora)) can evaluate functions
at any arbitrary point.

3.4 Execution

Here is a static mimic of a 22-second terminal session:
$ gmsh -3 tensile-test.geo

Info : Running ’gmsh -3 tensile-test.geo’ [Gmsh 4.5.2-git-2373007b0, 1 node, max. 1 thread]

Info : Started on Wed Jan 29 11:07:04 2020

Info : Reading ’tensile-test.geo’...

Info : Reading ’tensile-test-specimen.step’...

Info : - Label ’Shapes/ASSEMBLY/=>[0:1:1:2]/Pad’ (3D)

Info : - Color (0.8, 0.8, 0.8) (3D & Surfaces)

Info : Done reading ’tensile-test-specimen.step’

Info : Done reading ’tensile-test.geo’

Info : Meshing 1D...

Info : [ 0 %] Meshing curve 1 (Line)

Info : [ 10 %] Meshing curve 2 (Line)

Info : [ 10 %] Meshing curve 3 (Line)

[...]

Info : [100 %] Meshing surface 14 order 2

Info : [100 %] Meshing volume 1 order 2

Info : Surface mesh: worst distortion = 0.90913 (0 elements in ]0, 0.2]); worst gamma = 0.722061

Info : Volume mesh: worst distortion = 0.824145 (0 elements in ]0, 0.2])

Info : Done meshing order 2 (1.32521 s)

Info : 49534 nodes 40321 elements

Info : Writing ’tensile-test.msh’...

Info : Done writing ’tensile-test.msh’

Info : Stopped on Wed Jan 29 11:07:07 2020

$ fino tensile-test.fin

....................................................................................................

----------------------------------------------------------------------------------------------------

====================================================================================================

displ_max = 0.076 mm

sigma_max = 160.2 MPa

principal1 at center = 99.99998119 MPa

reaction = [ -1.000e+04 -1.693e-04 -1.114e-03 ] Newtons

$

https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2878450
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2878450
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2878666
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2878666
https://en.wikipedia.org/wiki/ASCII
tensile-sigma.dat
tensile-sigma.dat
https://www.gnu.org/software/make/manual/make.html#Standard-Targets
https://www.gnu.org/software/make/manual/make.html#Standard-Targets
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2878742
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2878742
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#id2878742
https://www.seamplex.com/wasora
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• The three lines with the dots, dashes and double dashes are ASCII progress bars for the
assembly of the stiffness matrix, the solution of the linear system and the computation
of stresses, respectively. They are turned on with PROGRESS_ASCII.

• Almost any location within the input file where a numerical value is expected can be
replaced by an algebraic expression, including standard functions like log, exp, sin,
etc. See wasora’s reference (https://www.seamplex.com/wasora/reference.html#
functions) for details.

• Once again, if the MESH_POST and PRINT instructions were not included, there would
not be any default output of the execution (rule of silence (http://www.linfo.org/
rule_of_silence.html)). This should be emphasized over and over, as I have recently
(i.e. thirteen years after the commercial introduction of smartphones) stumbled upon
a the output file of a classical FEM program that seems to have been executed in 1970:
paginated ASCII text ready to be fed to a matrix-doy printed containing all the possible
numerical output because the CPU cost of re-running the case of course overwhelms
the hourly rate of the engineer that hast to understand the results. For more than fifty
years (and counting), McIlroy’s second bullet above has been blatantly ignored.

• It has already been said that the output is 100% controlled by the user. Yet this
fact includes not just what is written but also how: the precision of the printed re-
sults is controlled with printf format specifiers (https://en.wikipedia.org/wiki/
Printf_format_string). Note the eight decimal positions in the evaluation of σ1 at
the origin, whilst the expected value was 100 MPa (the load is Fx = 104 N and the
cross-sectional area is 100 mm2).

• If available, the MUMPS Solver (http://mumps-solver.org/) direct solver can be
used instead of the default GAMG-preconditioned GMRES itearative solver by passing
the option --mumps in the command line. More on solvers in sec. 3.6.2.

3.5 Results

After the problem is solved and an appropriately-formatted output file is created, Fino’s
job is considered done. In this case, the post-processing file is written using MESH_POST.
The VTK output (tensile-test.vtk) can be post-processed with the free and open
source tool ParaView (http: / / www . paraview . org / ) (or any other tool that reads
VTK files ((https://lorensen.github.io/VTKExamples/site/VTKFileFormats/))
such as Gmsh in post-processing mode (http://gmsh.info/doc/texinfo/gmsh.html#
Post_002dprocessing)), as illustrated in fig. 3.

https://www.seamplex.com/wasora/reference.html#functions
https://www.seamplex.com/wasora/reference.html#functions
http://www.linfo.org/rule_of_silence.html
http://www.linfo.org/rule_of_silence.html
https://en.wikipedia.org/wiki/Printf_format_string
https://en.wikipedia.org/wiki/Printf_format_string
http://mumps-solver.org/
tensile-test.vtk
http://www.paraview.org/
(https://lorensen.github.io/VTKExamples/site/VTKFileFormats/)
http://gmsh.info/doc/texinfo/gmsh.html#Post_002dprocessing
http://gmsh.info/doc/texinfo/gmsh.html#Post_002dprocessing
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Figure 3: Tensile test results obtained by Fino and post-processed by ParaView. Dis-
placements are warped 500 times.

3.5.1 Check

Qualitatively speaking, Fino does what a mechanical finite-element program is expected to
do:

• The displacement vector and scalar von Mises stress fields are computed by Fino, as
they are successfully read by Paraview.

• Elongation in the x direction and mild contractions in y and z are observed.

• The principal stress σ1 should be equal to Fx/A, where

• Fx = 104 N, and

• A = 20 mm× 5 mm = 100 mm2.

In effect, σ1(0, 0, 0) = 100 MPa.

• The numerical reaction ~R at the fixed end reported by Fino is
~R = [−104 ≈ 10−4 ≈ 10−3]

T
N

which serves as a consistency check.

• Stress concentrations are obtained where they are expected.

3.6 Extra checks

The simple tensile test problem is qualitatively solved with Fino as expected. This section
extends the validation to further check that Fino is solving the right equations.

3.6.1 Strain energy convergence

It is a well-known result from the mathematical theory that the displacement-based finite-
element formulation gives a stiffer solution than the continuous problem. This means that
the total strain energy U in load-driven (displacement-driven) problems is always lower
(higher) than the exact physical value.

The following input files asks Fino to perform a parametric run on c ∈ [1 : 10] which
controls the characteristic element size `c = 10 mm/c:

PARAMETRIC c MIN 1 MAX 10 STEP 1
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lc = 10/c

M4 INPUT_FILE_PATH parametric.geo.m4 OUTPUT_FILE_PATH parametric.geo EXPAND lc

SHELL "gmsh -3 -v 0 parametric.geo"

MESH FILE_PATH parametric.msh

E = 200e3

nu = 0.3

PHYSICAL_GROUP left BC fixed

INCLUDE $1.fin # include either load or displ boundary condition

FINO_STEP

FINO_REACTION PHYSICAL_GROUP left RESULT R

PRINT c lc nodes %.4f strain_energy %.8f u(80,0,0) R(1) %.8f sigma1(0,0,0) %.3f time_wall_total %e memory

Depending on the command-line argument $1, it includes either load.fin

PHYSICAL_GROUP right BC Fx=1e4

or displ.fin

PHYSICAL_GROUP right BC u=0.075512349

$ fino parametric-energy.fin displ | tee displ.dat

10 10 1381 378.0254 0.07551236 -10012.19688820 100.12193130 0.393 5.705728e+07

20 5 3406 377.7806 0.07551234 -10005.87225589 100.05786431 1.416 1.020641e+08

30 3.33333 5934 377.7151 0.07551235 -10004.04718626 100.04035986 2.121 1.901896e+08

40 2.5 13173 377.6670 0.07551234 -10002.80454512 100.02703566 5.841 4.936827e+08

50 2 21897 377.6416 0.07551235 -10002.10898755 100.02189744 9.199 9.886843e+08

60 1.66667 36413 377.6316 0.07551234 -10001.84996627 100.01824358 20.676 1.319252e+09

70 1.42857 52883 377.6141 0.07551235 -10001.38248904 100.01358953 24.926 2.285650e+09

80 1.25 71568 377.6106 0.07551236 -10001.29858951 100.01271875 38.768 2.688750e+09

90 1.11111 103742 377.6026 0.07551235 -10001.09116871 100.01066954 67.782 3.595817e+09

100 1 136906 377.5994 0.07551234 -10000.99998694 100.00974332 90.248 4.684169e+09

$ fino parametric-energy.fin load | tee load.dat

10 10 1381 377.0997 0.07538952 -10000.00057800 99.99985582 0.826 5.935514e+07

20 5 3406 377.3440 0.07542967 -9999.99727028 99.99965822 2.036 1.042063e+08

30 3.33333 5934 377.4100 0.07544179 -10000.00700660 99.99980990 2.541 1.924178e+08

40 2.5 13173 377.4580 0.07545095 -9999.95509637 99.99981492 6.251 4.988027e+08

50 2 21897 377.4829 0.07545594 -9999.99976796 99.99974599 7.323 9.938166e+08

60 1.66667 36413 377.4938 0.07545809 -9999.97099411 99.99987546 14.838 1.328071e+09

70 1.42857 52883 377.5105 0.07546140 -9999.95702214 100.00028774 25.190 2.294686e+09

80 1.25 71568 377.5145 0.07546216 -9999.97300192 99.99997997 33.983 2.697781e+09

90 1.11111 103742 377.5201 0.07546350 -10000.04369761 99.99955431 45.707 3.604849e+09

100 1 136906 377.5267 0.07546443 -9999.93061385 100.00001476 99.697 4.685390e+09

$
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Figure 4: Total strain energy U computed by Fino as a function of the number of nodes
for load and displacement-driven problems.

Indeed, fig. 4 shows that the total strain energy U is a monotonically increasing function
of the number of nodes. Conversely, for the load-driven case it is monotonically decreasing,
which is the expected behavior of a displacement-based finite-element program.

3.6.2 Performance

Let’s switch our attention briefly to the subject of performance, which is indeed related to
what it is expected from a finite-element program. In the general case, the time needed to
solve a finite-element problem depends on

1. the size of the problem being solved,

a. the number of the nodes in the mesh

b. the number of degrees of freedom per node of the problem

2. the particular problem being solved,

a. the condition number of the stiffness matrix

b. the non-zero structure of the stiffness matrix

3. the computer used to solve the problem,

a. the architecture, frequency and number of the CPU(s)

b. the size, speed and number of memory cache levels

c. implementation details of the operating-system scheduler

4. the optimization flags used to compile the code

5. the algorithms used to solve the system of equations

a. preconditioner

b. linear solver
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c. parallelization (or lack of)

As it has been already explained, Fino uses PETSc (https://www.mcs.anl.gov/petsc/
)—pronounced PET-see (the S is silent). It is a suite of data structures and routines for the
scalable (parallel) solution of scientific applications modeled by partial differential equations.
In other words, it is a library programmed by professional programmers implementing state-
of-the-art numerical methods developed by professional mathematicians. And yet, it is free
and open source (https://www.mcs.anl.gov/petsc/documentation/license.html)
software.

PETSc provides a variety of linear solvers and preconditioners (https://www.mcs.anl.
gov/petsc/documentation/linearsolvertable.html) which can be used to solve the
finite-element formulation. The choice of the type of preconditioner and linear solver can
be done from the input file or directly from the command line. By default, mechanical
problems are solved with the Geometric algebraic multigrid (https://www.mcs.anl.gov/
petsc/petsc-current/docs/manualpages/PC/PCGAMG.html)-preconditioned Generalized
Minimal Residual method (https://www.mcs.anl.gov/petsc/petsc-current/docs/
manualpages/KSP/KSPGMRES.html), which is an iterative solver. An alternative might be
a direct sparse solver, such as the MUMPS Solver (http://mumps-solver.org/), which
Fino (through PETSc’s interface) can use.

To get some insight about how the problem size, the computer and the algorithms impact
in the time needed to solve the problem we perform another parametric run on c ∈ [1 : 12]
in two different computers with three different solvers and pre-conditioners:

1. Geometric Algebraic Multigrid preconditioner with Generalized Minimal Residual
solver (default)

2. LU direct solver used as a preconditoner

3. Cholesky-preconditioned direct MUMPS solver

FINO_SOLVER PC_TYPE $1 # either gamg, lu or mumps (read from commandline)

PARAMETRIC c MIN 1 MAX 12 STEP 1

lc = 10/c

FILE msh parametric-%d.msh c

MESH FILE msh

E = 200e3

nu = 0.3

PHYSICAL_GROUP left BC fixed

PHYSICAL_GROUP right BC Fx=1e4

FINO_STEP

PRINT c lc nodes %e time_wall_total memory time_wall_build time_wall_solve time_wall_stress

$ for i in gamg lu mumps; do fino parametric-solver.fin $i > ‘hostname‘-${i}.dat; done

$

https://www.mcs.anl.gov/petsc/
https://www.mcs.anl.gov/petsc/
https://www.mcs.anl.gov/petsc/documentation/license.html
https://www.mcs.anl.gov/petsc/documentation/license.html
https://www.mcs.anl.gov/petsc/documentation/linearsolvertable.html
https://www.mcs.anl.gov/petsc/documentation/linearsolvertable.html
https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGAMG.html
https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGAMG.html
https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGMRES.html
https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGMRES.html
https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGMRES.html
http://mumps-solver.org/
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Figure 5: Wall time needed to solve the linear problem as a function of the number
of nodes in two different computers. a — High-end desktop computer, b — Virtual server
running on the cloud Fig. 5 shows the dependence of the wall time (https://en.wikipedia.
org/wiki/Elapsed_real_time) needed to solve the linear problem with respect to the
number of nodes in two different computers. Only the time needed to solve the linear
problem is plotted. That is to say, the time needed to mesh the geometry, to build the

https://en.wikipedia.org/wiki/Elapsed_real_time
https://en.wikipedia.org/wiki/Elapsed_real_time
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matrix and to compute the stresses out of the displacements is not taken into account.
The reported times correspond to only one process, i.e. Fino is run in serial mode with no
parallelization requested. It can be seen that direct solvers are faster than the iterative
method for small problems. Yet GAMG scales better and for a certain problem size (which
depends on the hardware and more importantly on the particular problem being solved) its
performance is better than that of the direct solvers. This is a known result, which can be
stated as direct solvers are robust but not scalable.1

Fino defaults to GAMG+GMRES since this combination is provided natively by PETSc
and does not need any extra library (as in the MUMPS case), but it still sticks to the rule of
optimization (https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.
html#rule_of_optimization). Chances are that another combination of preconditioner,
solver (and hardware!) might be better suitable for the problem being solved. It is up to
the user to measure and to choose the most convenient configuration to obtain results as
efficiently as possible.
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Figure 6: Wall time for strong parallel scaling test.

1 See second bullet of slide #6 in http://www.mcs.anl.gov/petsc/petsc-20/tutorial/PETSc3.pdf.

https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#rule_of_optimization
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html#rule_of_optimization
http://www.mcs.anl.gov/petsc/petsc-20/tutorial/PETSc3.pdf
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4 Reference

4.1 Fino keywords

4.1.1 FINO LINEARIZE

Performs stress linearization according to ASME VII-Sec 5 over a Stress Clas-
sification Line

FINO_LINEARIZE { PHYSICAL_GROUP <physical_group> | START_POINT <x1> <y1> <z1> END_POINT <x2> <y2> <z2> }

[ FILE <file_id> | FILE_PATH <file_path> ]

[ TOTAL { vonmises tresca | tresca | principal1 | principal2 | principal3 }

[ M <variable> ]

[ MB <variable> ]

[ PEAK <variable> ]

The Stress Classification Line (SCL) may be given either as a one-dimensional physical
group in the mesh or as the (continuous) spatial coordinates of two end-points. If the SCL is
given as a PHYSICAL_GROUP, the entity should be one-dimensional (i.e a line) independently
of the dimension of the problem. If the SCL is given with START_POINT and END_POINT, the
number of coordinates given should match the problem dimension (i.e three coordinates for
full 3D problems and two coordinates for axisymmetric or plane problems). Coordinates
can be given algebraic expressions that will be evaluated at the time of the linearization.
If either a FILE or a FILE_PATH is given, the total, membrane and membrane plus bending
stresses are written as a function of a scalar t ∈ [0, 1]. Moreover, the individual elements of
the membrane and bending stress tensors are written within comments (i.e. lines starting
with the hash symbol #). By default, the linearization uses the Von Mises criterion for the
composition of stresses. The definition of what total stress means can be changed using
the TOTAL keyword. The membrane, bending and peak stress tensor elements are combined
using the Von Mises criterion and stored as variables. If no name for any of the variables is
given, they are stored in M_group, B_group and P_group respectively if there is a physical
group. Otherwise M_1, B_1 and P_1 for the first instruction, M_2. . . etc.

4.1.2 FINO PROBLEM

Sets the problem type that Fino has to solve.
FINO_PROBLEM [ mechanical | thermal | modal ]

[ AXISYMMETRIC | PLANE_STRESS | PLANE_STRAIN ] [ SYMMETRY_AXIS { x | y } ] [ LINEAR | NON_LINEAR ]

[ QUASISTATIC | TRANSIENT ]

[ DIMENSIONS <expr> ] [ MESH <identifier> ]

[ N_MODES <expr> ]

• mechanical (or elastic or break, default) solves the mechanical elastic problem (de-
fault).

• thermal (or heat or bake) solves the heat conduction problem.

• modal (or shake) computes the natural frequencies and oscillation modes.

If the AXISYMMETRIC keyword is given, the mesh is expected to be two-dimensional
in the x-y plane and the problem is assumed to be axi-symmetric around the axis given
by SYMMETRY_AXIS (default is y). If the problem type is mechanical and the mesh is two-
dimensional on the x-y plane and no axisymmetry is given, either PLANE_STRESS and PLAIN_

STRAIN can be provided (default is plane stress). By default Fino tries to detect wheter the
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computation should be linear or non-linear. An explicit mode can be set with either LINEAR
on NON_LINEAR. The number of spatial dimensions of the problem needs to be given either
with the keyword DIMENSIONS or by defining a MESH (with an explicit DIMENSIONS keyword)
before FINO_PROBLEM. If there are more than one MESHes define, the one over which the
problem is to be solved can be defined by giving the explicit mesh name with MESH. By
default, the first mesh to be defined in the input file is the one over which the problem
is solved. The number of modes to be computed in the modal problem. The default is
DEFAULT NMODES.

4.1.3 FINO REACTION

Computes the reaction at the selected physical group.

FINO_REACTION PHYSICAL_GROUP <physical_group> [ { FORCE | MOMENT } ] [ {X0 | Y0 | Z0 } expr ] RESULT { <variable> | <vector> }

The result is stored in the variable or vector provided, depending on the number of
degrees of freedoms of the problem. If the object passed as RESULT does not exist, an
appropriate object (scalar variable or vector) is created. For the elastic problem, the com-
ponents of the total reaction force are stored in the result vector. For the thermal problem,
the total power passing through the entity is computed as an scalar.

4.1.4 FINO SOLVER

Sets options related to the solver and the computation of gradients.

FINO_SOLVER [ PROGRESS ]

[ PC { gamg | mumps | lu | hypre | sor | bjacobi | cholesky | ... } ]

[ KSP { gmres | mumps | bcgs | bicg | richardson | chebyshev | ... } ]

[ TS { bdf | arkimex | rosw | glle | beuler | ... } ]

[ SNES_TYPE { newtonls | newtontr | nrichardson | ngmres | qn | ngs | ... } ]

[ GRADIENT { gauss | nodes | none } ]

[ GRADIENT_HIGHER { average | nodes } ]

[ SMOOTH { always | never | material } ]

[ ELEMENT_WEIGHT { volume_times_quality | volume | quality | flat } ]

If the keyword PROGRESS is given, three ASCII lines will show in the terminal the progress
of the ensamble of the stiffness matrix (or matrices), the solution of the system of equations
and the computation of gradients (stresses). The preconditioner, linear and non-linear solver
might be any of those available in PETSc:

• List of PCs http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/

PC/PCType.html.

• List of KSPs http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/
KSP/KSPType.html.

• List of TSs http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/

TS/TSType.html.

• List of SNESs http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/
SNES/SNESType.html.

If either PC or KSP is set to mumps (and PETSc is compiled with MUMPS support) then
this direct solver is used. For the mechanical problem, the default is to use GAMG as the
preconditioner and PETSc’s default solver (GMRES). For the thermal problem, the default
is to use the default PETSc settings. For the modal problem, the default is to use the default

http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCType.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCType.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPType.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPType.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSType.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSType.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/SNES/SNESType.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/SNES/SNESType.html
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SLEPc settings. The GRADIENT keyword controls how the derivatives (i.e. strains) at the
first-order nodes are to be computed out of the primary unknowns (i.e. displacements).

• gauss (default) computes the derivatives at the gauss points and the extrapolates the
values to the nodes

• nodes computes the derivatives direcetly at the nodes

• none does not compute any derivative at all

The way derivatives are computed at high-order nodes (i.e. those at the middle of edges
or faces) is controlled with GRADIENT_HIGHER:

• average (default) assigns the plain average of the first-order nodes that surrond each
high-order node

• none computes the derivatives at the location of the high-order nodes

The keyword SMOOTH controls how the gradient-based functions (i.e. strains, stresses,
etc) are smoothed—or not—to obtain nodal values out of data which primarily comes from
element-wise evaluations at the Gauss points.

• always (default) computes a single value for each node by averaging the contributions
of individual elements.

• never keeps the contribution of each individual element separate. This option implies
that the output mesh is different from the input mesh as each element now has a “copy”
of the original shared nodes.

• material averages element contribution only for those elements that belong to the same
material (i.e. physical group). As with never, a new output mesh is created where the
nodes are duplicated even for those elements which belong to the same physical group.

The way individual contributions of different elements to the same node are averaged is
controlled by ELEMENT_WEIGHT:

• volume_times_quality (default) weights each element by the product of its volume
times its quality

• volume weights each element by the its volume

• quality weights each element by the its quality

• flat performs plain averages (i.e. the same weight for all elements)

4.1.5 FINO STEP

Ask Fino to solve the problem and advance one step.

FINO_STEP

The location of the FINO_STEP keyword within the input file marks the logical location
where the problem is solved and the result functions (displacements, temperatures, stresses,
etc.) are available for output or further computation.

4.2 Mesh keywords

4.2.1 MATERIAL
MATERIAL <name> [ MESH <name> ] [ PHYSICAL_GROUP <name_1> [ PHYSICAL_GROUP <name_2> [ ... ] ] ] [ <property_name_1> <expr_1> [ <property_name_2> <expr_2> [ ... ] ] ]
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4.2.2 MESH

Reads an unstructured mesh from an external file in MSH, VTK or FRD format.
MESH [ NAME <name> ] { FILE <file_id> | FILE_PATH <file_path> } [ DIMENSIONS <num_expr> ]

[ SCALE <expr> ] [ OFFSET <expr_x> <expr_y> <expr_z> ]

[ INTEGRATION { full | reduced } ] [ RE_READ ]

[ READ_SCALAR <name_in_mesh> AS <function_name> ] [...]

[ READ_FUNCTION <function_name> ] [...]

If there will be only one mesh in the input file, the NAME is optional. Yet it might
be needed in cases where there are many meshes and one needs to refer to a particular
mesh, such as in MESH_POST or MESH_INTEGRATE. When solving PDEs (such as in Fino or
milonga), the first mesh is the problem mesh. Either a file identifier (defined previously
with a FILE keyword) or a file path should be given. The format is read from the extension,
which should be either

• .msh Gmsh ASCII format (http: / / gmsh . info / doc / texinfo / gmsh . html #

MSH-file-format), versions 2.2, 4.0 or 4.1

• .vtk ASCII legacy VTK (https: / / lorensen . github . io / VTKExamples / site /
VTKFileFormats/)

• .frd CalculiX’s FRD ASCII output (https: / / web . mit . edu / calculix_v2 . 7 /
CalculiX/cgx_2.7/doc/cgx/node4.html))

Note than only MSH is suitable for defining PDE domains, as it is the only one that
provides information about physical groups. The spatial dimensions should be given with
DIMENSION. If material properties are uniform and given with variables, the dimensions are
not needed and will be read from the file. But if spatial functions are needed (either for
properties or read from the mesh file), an explicit value for the mesh dimensions is needed.
If either SCALE or OFFSET are given, the node position if first shifted and then scaled by the
provided amounts. For each READ_SCALAR keyword, a point-wise defined function of space
named <function_name> is defined and filled with the scalar data named <name_in_mesh>

contained in the mesh file. The READ_FUNCTION keyword is a shortcut when the scalar name
and the to-be-defined function are the same. If no NAME is given, the first mesh to be defined
is called first.

4.2.3 MESH FILL VECTOR

Fills the elements of a vector with data evaluated at the nodes or the cells of a
mesh.

MESH_FILL_VECTOR VECTOR <vector> { FUNCTION <function> | EXPRESSION <expr> }

[ MESH <name> ] [ NODES | CELLS ]

The vector to be filled needs to be already defined and to have the appropriate size,
either the number of nodes or cells of the mesh depending on NODES or CELLS (default is
nodes). The elements of the vectors will be either the FUNCTION or the EXPRESSION of x, y
and z evaluated at the nodes or cells of the provided mesh. If there is more than one mesh,
the name has to be given.

4.2.4 MESH FIND MINMAX

Finds absolute extrema of a function or expression within a mesh-based domain.
MESH_FIND_MINMAX { FUNCTION <function> | EXPRESSION <expr> }

[ MESH <name> ] [ OVER <physical_group_name> ] [ NODES | CELLS ]

http://gmsh.info/doc/texinfo/gmsh.html#MSH-file-format
http://gmsh.info/doc/texinfo/gmsh.html#MSH-file-format
https://lorensen.github.io/VTKExamples/site/VTKFileFormats/
https://lorensen.github.io/VTKExamples/site/VTKFileFormats/
https://web.mit.edu/calculix_v2.7/CalculiX/cgx_2.7/doc/cgx/node4.html
https://web.mit.edu/calculix_v2.7/CalculiX/cgx_2.7/doc/cgx/node4.html
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[ MIN <variable> ] [ MAX <variable> ]

[ X_MIN <variable> ] [ Y_MIN <variable> ] [ Z_MIN <variable> ] [ I_MIN <variable> ]

[ X_MAX <variable> ] [ Y_MAX <variable> ] [ Z_MAX <variable> ] [ I_MAX <variable> ]

Either a FUNCTION or an EXPRESSION should be given. In the first case, just the function
name is expected (i.e. not its arguments). In the second case, a full algebraic expression
including the arguments is expected. If no explicit mesh is provided, the main mesh is used
to search for the extrema. If the OVER keyword is given, the search is performed only on
the provided physical group. Depending on the problem type, it might be needed to switch
from NODES to CELLS but this is usually not needed. If given, the minimum (maximum)
value is stored in the variable provided by the MIN (MAX) keyword. If given, the x (or y
or z) coordinate of the minimum (maximum) value is stored in the variable provided by
the X_MIN (or Y_MIN or Z_MIN) (X_MAX, Y_MAX, Z_MAX) keyword. If given, the index of the
minimum (maximum) value (i.e. the node or cell number) is stored in the variable provided
by the I_MIN (I_MAX) keyword.

4.2.5 MESH INTEGRATE

Performs a spatial integration of a function or expression over a mesh.

MESH_INTEGRATE { FUNCTION <function> | EXPRESSION <expr> }

[ MESH <mesh_identifier> ] [ OVER <physical_group> ] [ NODES | CELLS ]

RESULT <variable>

The integrand may be either a FUNCTION or an EXPRESSION. In the first case, just the
function name is expected (i.e. not its arguments). In the second case, a full algebraic
expression including the arguments is expected. If the expression is just 1 then the volume
(or area or length) of the domain is computed. Note that arguments ought to be x, y and/or
z. If there are more than one mesh defined, an explicit one has to be given with MESH. By
default the integration is performed over the highest-dimensional elements of the mesh. If
the integration is to be carried out over just a physical group, it has to be given in OVER.
Either NODES or CELLS define how the integration is to be performed. In the first case a
the integration is performed using the Gauss points and weights associated to each element
type. In the second case, the integral is computed as the sum of the product of the function
evaluated at the center of each cell (element) and the cell’s volume. The scalar result of
the integration is stored in the variable given by RESULT. If the variable does not exist, it
is created.

4.2.6 MESH MAIN
MESH_MAIN [ <name> ]

4.2.7 MESH POST
MESH_POST [ MESH <mesh_identifier> ] { FILE <name> | FILE_PATH <file_path> } [ NO_MESH ] [ FORMAT { gmsh | vtk } ] [ CELLS | ] NODES ] [ NO_PHYSICAL_NAMES ] [ VECTOR <function1_x> <function1_y> <function1_z> ] [...] [ <scalar_function_1> ] [ <scalar_function_2> ] ...

4.2.8 PHYSICAL GROUP

Defines a physical group of elements within a mesh file.

PHYSICAL_GROUP <name> [ MESH <name> ] [ DIMENSION <expr> ]

[ MATERIAL <name> ]

[ BC <bc_1> <bc_2> ... ]

A name is mandatory for each physical group defined within the input file. If there is no
physical group with the provided name in the mesh, this instruction makes no effect. If there
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are many meshes, an explicit mesh can be given with MESH. Otherwise, the physical group
is defined on the main mesh. An explicit dimension of the physical group can be provided
with DIMENSION. For volumetric elements, physical groups can be linked to materials using
MATERIAL. Note that if a material is created with the same name as a physical group in the
mesh, they will be linked automatically. The MATERIAL keyword in PHYSICAL_GROUP is used
to link a physical group in a mesh file and a material in the wasora input file with different
names. For non-volumetric elements, boundary conditions can be assigned by using the BC
keyword. This should be the last keyword of the line, and any token afterwards is treated
specially by the underlying solver (i.e. Fino or milonga).

4.2.9 PHYSICAL PROPERTY
PHYSICAL_PROPERTY <name> [ <material_name1> <expr1> [ <material_name2> <expr2> ] ... ]

4.3 Special input distributions

TBD.

4.4 Boundary conditions

TBD.

4.5 Result functions

TBD.

4.6 Wasora keywords

4.6.1 =

Assign an expression to a variable, a vector or a matrix.

<var>[ [<expr_tmin>, <expr_tmax>] |

<expr_t> ] = <expr> <vector>(<expr_i>)[<expr_i_min, expr_i_max>] [ [<expr_tmin>, <expr_tmax>] |

<expr_t> ] = <expr> <matrix>(<expr_i>,<expr_j>)[<expr_i_min, expr_i_max; expr_j_min, expr_j_max>] [ [<expr_tmin>, <expr_tmax>] |

<expr_t> ] = <expr>

4.6.2 .=

Add an equation to the DAE system to be solved in the phase space spanned
by PHASE_SPACE.

{ 0[(i[,j]][<imin:imax[;jmin:jmax]>] | <expr1> } .= <expr2>

4.6.3 ABORT

Catastrophically abort the execution and quit wasora.

ABORT

Whenever the instruction ABORT is executed, wasora quits without closing files or un-
locking shared memory objects. The objective of this instruction is, as illustrated in the
examples, either to debug complex input files and check the values of certain variables or
to conditionally abort the execution using IF clauses.
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4.6.4 ALIAS

Define a scalar alias of an already-defined indentifier.

ALIAS { <new_var_name> IS <existing_object> | <existing_object> AS <new_name> }

The existing object can be a variable, a vector element or a matrix element. In the first
case, the name of the variable should be given as the existing object. In the second case,
to alias the second element of vector v to the new name new, v(2) should be given as the
existing object. In the third case, to alias second element (2,3) of matrix M to the new name
new, M(2,3) should be given as the existing object.

4.6.5 CALL

Call a previously dynamically-loaded user-provided routine.

CALL <name> [ expr_1 expr_2 ... expr_n ]

4.6.6 CLOSE

Explicitly close an already-OPENed file.

CLOSE

4.6.7 CONST

Mark a scalar variable, vector or matrix as a constant.

CONST name_1 [ <name_2> ] ... [ <name_n> ]

4.6.8 DEFAULT ARGUMENT VALUE

Give a default value for an optional commandline argument.

DEFAULT_ARGUMENT_VALUE <constant> <string>

If a $n construction is found in the input file but the commandline argument was not
given, the default behavior is to fail complaining that an extra argument has to be given
in the commandline. With this keyword, a default value can be assigned if no argument is
given, thus avoiding the failure and making the argument optional.

4.6.9 DIFFERENTIAL

Explicitly mark variables, vectors or matrices as “differential” to compute intial
conditions of DAE systems.

DIFFERENTIAL { <var_1> <var_2> ... | <vector_1> <vector_2> ... | <matrix_1> <matrix_2> ... }

4.6.10 DO NOT EVALUATE AT PARSE TIME

Ask wasora not to evaluate assignments at parse time.

DO_NOT_EVALUATE_AT_PARSE_TIME

4.6.11 FILE

Define a file, either as input or as output, for further usage.

< FILE | OUTPUT_FILE | INPUT_FILE > <name> <printf_format> [ expr_1 expr_2 ... expr_n ] [ INPUT | OUTPUT | MODE <fopen_mode> ] [ OPEN | DO_NOT_OPEN ]
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4.6.12 FIT

Fit a function of one or more arguments to a set of pointwise-defined data.
FIT <function_to_be_fitted> TO <function_with_data> VIA <var_1> <var_2> ... <var_n>

[ GRADIENT <expr_1> <expr_2> ... <expr_n> ]

[ RANGE_MIN <expr_1> <expr_2> ... <expr_j> ]

[ RANGE_MAX <expr_1> <expr_2> ... <expr_n> ]

[ DELTAEPSREL <expr> ] [ DELTAEPSABS <expr> ] [ MAX_ITER <expr> ]

[ VERBOSE ] [ RERUN | DO_NOT_RERUN ]

The function with the data has to be point-wise defined (i.e. a FUNCTION read from a
file with inline DATA). The function to be fitted has to be parametrized with at least one
of the variables provided after the VIA keyword. Only the names of the functions have to
be given, not the arguments. Both functions have to have the same number of arguments.
The initial guess of the solution is given by the initial value of the variables listed in the
VIA keyword. Analytical expressions for the gradient of the function to be fitted with
respect to the parameters to be fitted can be optionally given with the GRADIENT keyword.
If none is provided, the gradient will be computed numerically using finite differences. A
range over which the residuals are to be minimized can be given with RANGE_MIN and
RANGE_MAX. The expressions give the range of the arguments of the functions, not of the
parameters. For multidimensional fits, the range is an hypercube. If no range is given, all
the definition points of the function with the data are used for the fit. Convergence can be
controlled by giving the relative and absolute tolreances with DELTAEPSREL (default 1e-4)
and DELTAEPSABS (default 1e-6), and with the maximum number of iterations MAX_ITER

(default 100). If the optional keyword VERBOSE is given, some data of the intermediate
steps is written in the standard output. The combination of arguments that minimize the
function are computed and stored in the variables. So if f(x,y) is to be minimized, after
a MINIMIZE f both x and y would have the appropriate values. The details of the method
used can be found in GSL’s documentation (https://www.gnu.org/software/gsl/doc/
html/multimin.html). Some of them use derivatives and some of them do not. Default
method is gsl_multimin_fminimizer_nmsimplex2, which does not need derivatives.

4.6.13 FUNCTION

Define a function of one or more variables.
FUNCTION <name>(<var_1>[,var2,...,var_n]) { [ = <expr> | FILE_PATH <file_path> | ROUTINE <name> | | MESH <name> { DATA <new_vector_name> | VECTOR <existing_vector_name> } { NODES | CELLS } | [ VECTOR_DATA <vector_1> <vector_2> ... <vector_n> <vector_n+1> ] } [COLUMNS <expr_1> <expr_2> ... <expr_n> <expr_n+1> ] [ INTERPOLATION { linear | polynomial | spline | spline_periodic | akima | akima_periodic | steffen | nearest | shepard | shepard_kd | bilinear } ] [ INTERPOLATION_THRESHOLD <expr> ] [ SHEPARD_RADIUS <expr> ] [ SHEPARD_EXPONENT <expr> ] [ SIZES <expr_1> <expr_2> ... <expr_n> ] [ X_INCREASES_FIRST <expr> ] [ DATA <num_1> <num_2> ... <num_N> ]

The number of variables n is given by the number of arguments given between parenthesis
after the function name. The arguments are defined as new variables if they had not been
already defined as variables. If the function is given as an algebraic expression, the short-
hand operator := can be used. That is to say, FUNCTION f(x) = x^2 is equivalent to f(x)

:= x^2. If a FILE_PATH is given, an ASCII file containing at least n+1 columns is expected.
By default, the first n columns are the values of the arguments and the last column is the
value of the function at those points. The order of the columns can be changed with the
keyword COLUMNS, which expects n + 1 expressions corresponding to the column numbers.
A function of type ROUTINE calls an already-defined user-provided routine using the CALL

keyword and passes the values of the variables in each required evaluation as a double *

argument. If MESH is given, the definition points are the nodes or the cells of the mesh.
The function arguments should be (x), (x, y) or (x, y, z) matching the dimension the mesh.
If the keyword DATA is used, a new empty vector of the appropriate size is defined. The
elements of this new vector can be assigned to the values of the function at the i-th node

https://www.gnu.org/software/gsl/doc/html/multimin.html
https://www.gnu.org/software/gsl/doc/html/multimin.html
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or cell. If the keyword VECTOR is used, the values of the dependent variable are taken to be
the values of the already-existing vector. Note that this vector should have the size of the
number of nodes or cells the mesh has, depending on whether NODES or CELLS is given. If
VECTOR_DATA is given, a set of n + 1 vectors of the same size is expected. The first n + 1
correspond to the arguments and the last one is the function value. Interpolation schemes
can be given for either one or multi-dimensional functions with INTERPOLATION. Available
schemes for n = 1 are:

• linear

• polynomial, the grade is equal to the number of data minus one

• spline, cubic (needs at least 3 points)

• spline periodic

• akima (needs at least 5 points)

• akima periodic (needs at least 5 points)

• steffen, always-monotonic splines-like (available only with GSL >= 2.0)

Default interpolation scheme for one-dimensional functions is (*gsl_interp_linear).

Available schemes for n > 1 are:

• nearest, f(~x) is equal to the value of the closest definition point

• shepard, inverse distance weighted average definition points (https://en.wikipedia.
org/wiki/Inverse_distance_weighting) (might lead to inefficient evaluation)

• shepard kd, average of definition points within a kd-tree (https://en.wikipedia.
org/wiki/Inverse_distance_weighting#Modified_Shepard’s_method) (more effi-
cient evaluation provided SHEPARD_RADIUS is set to a proper value)

• bilinear, only available if the definition points configure an structured hypercube-like
grid. If n > 3, SIZES should be given.

For n > 1, if the euclidean distance between the arguments and the definition points is
smaller than INTERPOLATION_THRESHOLD, the definition point is returned and no interpola-
tion is performed. Default value is square root of 9.5367431640625e-07. The initial radius
of points to take into account in shepard_kd is given by SHEPARD_RADIUS. If no points
are found, the radius is double until at least one definition point is found. The radius is
doubled until at least one point is found. Default is 1.0. The exponent of the shepard

method is given by SHEPARD_EXPONENT. Default is 2. When requesting bilinear inter-
polation for n > 3, the number of definition points for each argument variable has to be
given with SIZES, and wether the definition data is sorted with the first argument changing
first (X_INCREASES_FIRST evaluating to non-zero) or with the last argument changing first
(zero). The function can be pointwise-defined inline in the input using DATA. This should
be the last keyword of the line, followed by N = k · (n + 1) expresions giving k definition
points: n arguments and the value of the function. Multiline continuation using brackets {
and } can be used for a clean data organization. See the examples.

4.6.14 HISTORY

Record the time history of a variable as a function of time.

HISTORY <variable> <function>

https://en.wikipedia.org/wiki/Inverse_distance_weighting
https://en.wikipedia.org/wiki/Inverse_distance_weighting
https://en.wikipedia.org/wiki/Inverse_distance_weighting#Modified_Shepard's_method
https://en.wikipedia.org/wiki/Inverse_distance_weighting#Modified_Shepard's_method
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4.6.15 IF

Begin a conditional block.

IF expr

<block_of_instructions_if_expr_is_true>

[ ELSE ]

[block_of_instructions_if_expr_is_false]

ENDIF

4.6.16 IMPLICIT

Define whether implicit declaration of variables is allowed or not.

IMPLICIT { NONE | ALLOWED }

By default, wasora allows variables (but not vectors nor matrices) to be implicitly de-
clared. To avoid introducing errors due to typos, explicit declaration of variables can be
forced by giving IMPLICIT NONE. Whether implicit declaration is allowed or explicit decla-
ration is required depends on the last IMPLICIT keyword given, which by default is ALLOWED.

4.6.17 INCLUDE

Include another wasora input file.

INCLUDE <file_path> [ FROM <num_expr> ] [ TO <num_expr> ]

Includes the input file located in the string file_path at the current location. The effect
is the same as copying and pasting the contents of the included file at the location of the
INCLUDE keyword. The path can be relative or absolute. Note, however, that when including
files inside IF blocks that instructions are conditionally-executed but all definitions (such
as function definitions) are processed at parse-time independently from the evaluation of
the conditional. The optional FROM and TO keywords can be used to include only portions
of a file.

4.6.18 INITIAL CONDITIONS MODE

Define how initial conditions of DAE problems are computed.

INITIAL_CONDITIONS_MODE { AS_PROVIDED | FROM_VARIABLES | FROM_DERIVATIVES }

In DAE problems, initial conditions may be either:

• equal to the provided expressions (AS_PROVIDED)

• the derivatives computed from the provided phase-space variables (FROM_VARIABLES)

• the phase-space variables computed from the provided derivatives (FROM_DERIVATIVES)

In the first case, it is up to the user to fulfill the DAE system at t = 0. If the
residuals are not small enough, a convergence error will occur. The FROM_VARIABLES

option means calling IDA’s IDACalcIC routine with the parameter IDA_YA_YDP_INIT.
The FROM_DERIVATIVES option means calling IDA’s IDACalcIC routine with the
parameter IDA Y INIT. Wasora should be able to automatically detect which variables in
phase-space are differential and which are purely algebraic. However, the DIFFERENTIAL

keyword may be used to explicitly define them. See the (SUNDIALS documenta-
tion)[https://computation.llnl.gov/casc/sundials/documentation/ida guide.pdf] for
further information.
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4.6.19 LOAD PLUGIN

Load a wasora plug-in from a dynamic shared object.

LOAD_PLUGIN { <file_path> | <plugin_name> }

A wasora plugin in the form of a dynamic shared object (i.e. .so) can be loaded either
with the LOAD_PLUGIN keyword or from the command line with the -p option. Either a file
path or a plugin name can be given. The following locations are tried:

• the current directory ./

• the parent directory ../

• the user’s LD_LIBRARY_PATH

• the cache file /etc/ld.so.cache

• the directories /lib, /usr/lib, /usr/local/lib

If a wasora plugin was compiled and installed following the make install procedure,
the plugin should be loaded by just passing the name to LOAD_PLUGIN.

4.6.20 LOAD ROUTINE

Load one or more routines from a dynamic shared object.

LOAD_ROUTINE <file_path> <routine_1> [ <routine_2> ... <routine_n> ]

4.6.21 M4

Call the m4 macro processor with definitions from wasora variables or expres-
sions.

M4 { INPUT_FILE <file_id> | FILE_PATH <file_path> } { OUTPUT_FILE <file_id> | OUTPUT_FILE_PATH <file_path> } [ EXPAND <name> ] ... } [ MACRO <name> [ <format> ] <definition> ] ... }

4.6.22 MATRIX

Define a matrix.

MATRIX <name> ROWS <expr> COLS <expr> [ DATA num_expr_1 num_expr_2 ... num_expr_n ]

4.6.23 MINIMIZE

Find the combination of arguments that give a (relative) minimum of a function.

MINIMIZE <function>

[ METHOD { nmsimplex2 | nmsimplex | nmsimplex2rand | conjugate_fr | conjugate_pr | vector_bfgs2 | vector_bfgs | steepest_descent}

[ GRADIENT <expr_1> <expr_2> ... <expr_n> ]

[ GUESS <expr_1> <expr_2> ... <expr_n> ]

[ MIN <expr_1> <expr_2> ... <expr_n> ]

[ MAX <expr_1> <expr_2> ... <expr_n> ]

[ STEP <expr_1> <expr_2> ... <expr_n> ]

[ MAX_ITER <expr> ] [ TOL <expr> ] [ GRADTOL <expr> ]

[ VERBOSE ] [ NORERUN ]

4.6.24 PARAMETRIC

Systematically sweep a zone of the parameter space, i.e. perform a parametric
run.

PARAMETRIC <var_1> [ ... <var_n> ] [ TYPE { linear | logarithmic | random | gaussianrandom | sobol | niederreiter | halton | reversehalton } ] [ MIN <num_expr_1> ... <num_expr_n> ] [ MAX <num_expr_1> ... <num_expr_n> ] [ STEP <num_expr_1> ... <num_expr_n> ] [ NSTEPS <num_expr_1> ... <num_expr_n> ] [ OUTER_STEPS <num_expr> ] [ MAX_DAUGHTERS <num_expr> ] [ OFFSET <num_expr> ] [ ADIABATIC ]
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4.6.25 PHASE SPACE

Define which variables, vectors and/or matrices belong to the phase space of
the DAE system to be solved.

PHASE_SPACE { <vars> | <vectors> | <matrices> }

4.6.26 PRINT

Print plain-text and/or formatted data to the standard output or into an output
file.

PRINT [ FILE <file_id> | FILE_PATH <file_path> ] [ NONEWLINE ] [ SEP <string> ] [ NOSEP ] [ HEADER ] [ SKIP_STEP <expr> ] [ SKIP_STATIC_STEP <expr> ] [ SKIP_TIME <expr> ] [ SKIP_HEADER_STEP <expr> ] [ <object_1> <object_2> ... <object_n> ] [ TEXT <string_1> ... TEXT <string_n> ]

Each argument object that is not a keyword is expected to be part of the output, can
be either a matrix, a vector, an scalar algebraic expression. If the given object cannot be
solved into a valid matrix, vector or expression, it is treated as a string literal if IMPLICIT
is ALLOWED, otherwise a parser error is raised. To explicitly interpret an object as a literal
string even if it resolves to a valid numerical expression, it should be prefixed with the TEXT
keyword. Hashes # appearing literal in text strings have to be quoted to prevent the parser
to treat them as comments within the wasora input file and thus ignoring the rest of the
line. Whenever an argument starts with a porcentage sign %, it is treated as a C printf-
compatible format definition and all the objects that follow it are printed using the given
format until a new format definition is found. The objects are treated as double-precision
floating point numbers, so only floating point formats should be given. The default format
is "%g". Matrices, vectors, scalar expressions, format modifiers and string literals can be
given in any desired order, and are processed from left to right. Vectors are printed element-
by-element in a single row. See PRINT_VECTOR to print vectors column-wise. Matrices are
printed element-by-element in a single line using row-major ordering if mixed with other
objects but in the natural row and column fashion if it is the only given object. If the
FILE keyword is not provided, default is to write to stdout. If the NONEWLINE keyword is
not provided, default is to write a newline \n character after all the objects are processed.
The SEP keywords expects a string used to separate printed objects, the default is a tab
‘DEFAULT PRINT SEPARATOR’ character. Use the NOSEP keyword to define an empty
string as object separator. If the HEADER keyword is given, a single line containing the
literal text given for each object is printed at the very first time the PRINT instruction is
processed, starting with a hash # character. If the SKIP_STEP (SKIP_STATIC_STEP)keyword
is given, the instruction is processed only every the number of transient (static) steps that
results in evaluating the expression, which may not be constant. By default the PRINT

instruction is evaluated every step. The SKIP_HEADER_STEP keyword works similarly for
the optional HEADER but by default it is only printed once. The SKIP_TIME keyword use
time advancements to choose how to skip printing and may be useful for non-constant
time-step problems.

4.6.27 PRINT FUNCTION

Print one or more functions as a table of values of dependent and independent
variables.

PRINT_FUNCTION <function_1> [ { function_2 | expr_1 } ... { function_n | expr_n-1 } ] [ FILE <file_id> | FILE_PATH <file_path> ] [ HEADER ] [ MIN <expr_1> <expr_2> ... <expr_m> ] [ MAX <expr_1> <expr_2> ... <expr_m> ] [ STEP <expr_1> <expr_2> ... <expr_m> ] [ NSTEPs <expr_1> <expr_2> ... <expr_m> ] [ FORMAT <print_format> ] [ PHYSICAL_ENTITY <name> ]

4.6.28 PRINT VECTOR

Print the elements of one or more vectors.
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PRINT_VECTOR [ FILE <file_id> ] FILE_PATH <file_path> ] [ { VERTICAL | HORIZONTAL } ] [ ELEMS_PER_LINE <expr> ] [ FORMAT <print_format> ] <vector_1> [ vector_2 ... vector_n ]

4.6.29 READ

Read data (variables, vectors o matrices) from files or shared-memory segments.

[ READ | WRITE ] [ SHM <name> ] [ { ASCII_FILE_PATH | BINARY_FILE_PATH } <file_path> ] [ { ASCII_FILE | BINARY_FILE } <identifier> ] [ IGNORE_NULL ] [ object_1 object_2 ... object_n ]

4.6.30 SEMAPHORE

Perform either a wait or a post operation on a named shared semaphore.

[ SEMAPHORE | SEM ] <name> { WAIT | POST }

4.6.31 SHELL

Execute a shell command.

SHELL <print_format> [ expr_1 expr_2 ... expr_n ]

4.6.32 SOLVE

Solve a non-linear system of n equations with n unknowns.

SOLVE <n> UNKNOWNS <var_1> <var_2> ... <var_n> RESIDUALS <expr_1> <expr_2> ... <expr_n> ] GUESS <expr_1> <expr_2> ... <expr_n> ] [ METHOD { dnewton | hybrid | hybrids | broyden } ] [ EPSABS <expr> ] [ EPSREL <expr> ] [ MAX_ITER <expr> ] [ VERBOSE ]

4.6.33 TIME PATH

Force transient problems to pass through specific instants of time.

TIME_PATH <expr_1> [ <expr_2> [ ... <expr_n> ] ]

The time step dt will be reduced whenever the distance between the current time t

and the next expression in the list is greater than dt so as to force t to coincide with the
expressions given. The list of expresssions should evaluate to a sorted list of values.

4.6.34 VAR

Define one or more scalar variables.

VAR <name_1> [ <name_2> ] ... [ <name_n> ]

4.6.35 VECTOR

Define a vector.

VECTOR <name> SIZE <expr> [ DATA <expr_1> <expr_2> ... <expr_n> | FUNCTION_DATA <function> ]

4.6.36 VECTOR SORT

Sort the elements of a vector using a specific numerical order, potentially making
the same rearrangement of another vector.

VECTOR_SORT <vector> [ ASCENDING_ORDER | DESCENDING_ORDER ] [ <vector> ]

4.6.37 WRITE

Write data (variables, vectors o matrices) to files or shared-memory segments.
See the READ keyword for usage details.
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4.7 Fino variables

4.7.1 delta sigma max

The uncertainty of the maximum Von Mises stress σ of the elastic problem. Not to be
confused with the maximum uncertainty of the Von Mises stress.

4.7.2 displ max

The module of the maximum displacement of the elastic problem.

4.7.3 displ max x

The x coordinate of the maximum displacement of the elastic problem.

4.7.4 displ max y

The y coordinate of the maximum displacement of the elastic problem.

4.7.5 displ max z

The z coordinate of the maximum displacement of the elastic problem.

4.7.6 fino abstol

Absolute tolerance of the linear solver, as passed to PETSc’s [KSPSetTolerances](http:
Default 1e-50.

4.7.7 fino divtol

Divergence tolerance, as passed to PETSc’s [KSPSetTolerances](http: Default 1e+4.

4.7.8 fino gamg threshold

Relative threshold to use for dropping edges in aggregation graph for the [Geometric Al-
gebraic Multigrid Preconditioner](http: as passed to PETSc’s [PCGAMGSetThreshold](http:
A value of 0.0 means keep all nonzero entries in the graph; negative means keep even zero
entries in the graph. Default 0.01.

4.7.9 fino iterations

This variable contains the actual number of iterations used by the solver. It is set after
FINO_STEP.

4.7.10 fino max iterations

Number of maximum iterations before diverging, as passed to PETSc’s
[KSPSetTolerances](http: Default 10000.

4.7.11 fino penalty weight

The weight w used when setting multi-freedom boundary conditions. Higher values mean
better precision in the constrain but distort the matrix condition number. Default is 1e8.

4.7.12 fino reltol

Relative tolerance of the linear solver, as passed to PETSc’s [KSPSetTolerances](http:
Default 1e-6.
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4.7.13 fino residual norm

This variable contains the residual obtained by the solver. It is set after FINO_STEP.

4.7.14 lambda

Requested eigenvalue. It is equal to 1.0 until FINO_STEP is executed.

4.7.15 memory

Maximum resident set size (global memory used), in bytes.

4.7.16 memory available

Total available memory, in bytes.

4.7.17 memory petsc

Maximum resident set size (memory used by PETSc), in bytes.

4.7.18 nodes rough

The number of nodes of the mesh in ROUGH mode.

4.7.19 petsc flops

Number of floating point operations performed by PETSc/SLEPc.

4.7.20 sigma max

The maximum von Mises stress σ of the elastic problem.

4.7.21 sigma max x

The x coordinate of the maximum von Mises stress σ of the elastic problem.

4.7.22 sigma max y

The x coordinate of the maximum von Mises stress σ of the elastic problem.

4.7.23 sigma max z

The x coordinate of the maximum von Mises stress σ of the elastic problem.

4.7.24 strain energy

The strain energy stored in the solid, computed as 1/2 ·~uTK~u where ~u is the displacements
vector and K is the stiffness matrix.

4.7.25 time cpu build

CPU time insumed to build the problem matrices, in seconds.

4.7.26 time cpu solve

CPU time insumed to solve the problem, in seconds.

4.7.27 time cpu stress

CPU time insumed to compute the stresses from the displacements, in seconds.
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4.7.28 time petsc build

CPU time insumed by PETSc to build the problem matrices, in seconds.

4.7.29 time petsc solve

CPU time insumed by PETSc to solve the eigen-problem, in seconds.

4.7.30 time petsc stress

CPU time insumed by PETSc to compute the stresses, in seconds.

4.7.31 time wall build

Wall time insumed to build the problem matrices, in seconds.

4.7.32 time wall solve

Wall time insumed to solve the problem, in seconds.

4.7.33 time wall stress

Wall time insumed to compute the stresses, in seconds.

4.7.34 time wall total

Wall time insumed to initialize, build and solve, in seconds. CPU time insumed to initialize,
build and solve, in seconds. CPU time insumed by PETSc to initialize, build and solve, in
seconds.

4.7.35 T max

The maximum temperature Tmax of the thermal problem.

4.7.36 T min

The minimum temperature Tmin of the thermal problem.

4.7.37 u at displ max

The x component u of the maximum displacement of the elastic problem.

4.7.38 u at sigma max

The x component u of the displacement where the maximum von Mises stress σ of the
elastic problem is located.

4.7.39 v at displ max

The y component v of the maximum displacement of the elastic problem.

4.7.40 v at sigma max

The y component v of the displacement where the maximum von Mises stress σ of the
elastic problem is located.

4.7.41 w at displ max

The z component w of the maximum displacement of the elastic problem.
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4.7.42 w at sigma max

The z component w of the displacement where the maximum von Mises stress σ of the
elastic problem is located.
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