Cylinder embedded in another cylinder-smooth

Fino test case 105-cyl-cyl-smooth

TitleCylinder embedded in another cylinder—smoothTagselasticity compression bendingRunng timea few secondsSee also115-cyl-cyl-roughCAEplex casehttps://caeplex.com/p/f7916Available inHTML PDF ePub

1 Problem description

Consider a vertical cylinder aligned with the z axis of radius $r_1 = 25$ mm and height h = 50 mm which is embedded into another larger vertical cylinder of radius $r_2 = 50$ mm with the same height h. The base of the larger embedding cylinder lies on the x-y plane and the embedded cylinder is shifted h/2 = 25 mm upwards (fig. 1. The material properties are given in tbl. 2

Table 2:	Material	properties
----------	----------	------------

	Young modulus E [GPa]	Poisson's coefficient ν
Small cylinder (stem)	120	0.26
Large cylinder (base)	2.5	0.36

The base and the lateral surface of the large cylinder are fully fixed. The upper surface of the stem has a traction condition $\sigma_t = (+1, 0, -10)$ MPa so both compression and bending solicitations exist.

2 Geometry and mesh

The geometry was created in FreeCAD and exported as a BREP file. The following cyl-cyl-smooth.geo loads the geometry and defines the physical groups:

- volume stem is the small cylinder,
- volume base is the large cylinder,
- surfaces fixed are the base and the lateral surfaces of the large cylinder (base) which are to be fixed, and
- surface load is the top surface of the small cylinder (stem).

```
Merge "cyl-cyl-freecad.brep"; // load geometry
// physical groups
Physical Volume("stem") = {1};
Physical Volume("base") = {2};
Physical Surface("fixed") = {5, 7};
```


Figure 1: A small cylinder embedded into another one. CAD from CAEplex https://caeplex.com/p/f7916


```
Physical Surface("load") = {3};
// mesh options
Mesh.CharacteristicLengthMax = 3.0;
Mesh.SecondOrderLinear = 0; // curved
Mesh.ElementOrder = 2; // second—order elements
Mesh.Algorithm = 6;
Mesh.Algorithm3D = 1;
Mesh.Optimize = 1;
Mesh.OptimizeNetgen = 1;
Mesh.HighOrderOptimize = 1;
```

3 Input file

The annotated input file cyl-cyl-smooth.fin explains what it does. Properties in multi-material problems are given using the MATERIAL keyword.

4 Execution

Besides reporting the maximum displacement, which will be used when comparing results with CalculiX, a single VTK file cyl-cyl-smooth-fino.vtk with the displacement field and the von Mises stress distribution is created.

Note that we ask Fino to *always* smooth stresses, unlike Cylinder embedded in another cylinder—rough where we investigate what happens if stresses are *never* averaged.

5 Results

Figs. 2a, 2b show the stresses over the warped geometry. As expected, both compression and bending is obtained. The "curved" tetrahedra (and triangles) can be seen, especially on the stem as each actual second-order triangle is shown as composed of four smaller ones which are not co-planar.

6 Check

The same problem is solved with CalculiX using an input file created with FreeCAD FEM module (this is the reason the original geometry was created with FreeCAD) with the same Gmsh-generated mesh as when solving with Fino. CalculiX' output FRD file and Fino's output VTK file are both read back by Fino (actually by the wasora framework) and an algebraic difference is taken at each point of space in order to create a new VTK file comparing the two solutions:

```
# read Fino's results
MESH NAME fino FILE_PATH cyl-cyl-smooth-fino.vtk DIMENSIONS 3 {
  READ_SCALAR u_v_w1 as u
  READ_SCALAR u_v_w2 as v
  READ_SCALAR u_v_w3 as w
  READ_FUNCTION sigma
}
# read CalculiX' results
MESH NAME ccx FILE_PATH cyl-cyl-smooth.frd DIMENSIONS 3 {
 READ_FUNCTION D1 READ_FUNCTION D2 READ_FUNCTION D3
 READ FUNCTION SXX READ FUNCTION SYY READ FUNCTION SZZ
 READ_FUNCTION SXY READ_FUNCTION SYZ READ_FUNCTION SZX
}
# compute Von Mises for ccx out of the stress tensor
SVM(x,y,z) := sqrt(0.5*((SXX(x,y,z)-SYY(x,y,z))^2 + )
                        (SYY(x,y,z)-SZZ(x,y,z))^2 + 
                        (SZZ(x,y,z)-SXX(x,y,z))^2 + 
                         6*(SXY(x,y,z)^2 + SYZ(x,y,z)^2 + SZX(x,y,z)^2)))
# compute algebraic differences
diff_sigma(x, y, z) := SVM(x, y, z) - sigma(x, y, z)
diff_u(x,y,z) := D1(x,y,z) - u(x,y,z)
diff_v(x,y,z) := D2(x,y,z) - v(x,y,z)
diff_w(x,y,z) := D3(x,y,z) - w(x,y,z)
# write VIK files using both grids to make sure they are the same
MESH POST MESH fino FILE PATH diff-smooth-fino.vtk VECTOR diff u diff v diff w diff sigma
MESH_POST MESH ccx
                      FILE_PATH diff-smooth-ccx.vtk VECTOR diff_u diff_v diff_w diff_sigma
```

Fig. 3a shows the results of the abolute differences in displacements as computed by Fino and CalculiX. The maximum magnitude is 1.4×10^{-4} mm whereas the maximum computed displacement, as reported in the terminal mimic, is 2.5×10^{-2} mm—although these maxima do not occur at the same locations. On the other hand, it can be seen in fig. 3b that the maximum differences in stresses are in the order of 0.3%.

(b) Clipped & warped $\times 250$ view

Figure 2: Von Mises stresses obtained by Fino

(a) Displacements warped $\times 10^5$ with the difference

(b) Stresses warped $\times 250$ with the original displacements

Figure 3: Absolute differences between Fino and CalculiX