
Neutron diffusion

Contents

1 IAEA 2D PWR Benchmark 2

2 IAEA 3D PWR Benchmark 4

3 Cube-spherical bare reactor 12

4 Illustration of the XS dilution & smearing effect 16

Neutron diffusion

1 IAEA 2D PWR Benchmark
BENCHMARK PROBLEM
#
Identification : 11−A2 Source Situation ID.11
Date Submitted : June 1976 By: R. R. Lee (CE)
D. A. Menely (Ontario Hydro)
B. Micheelsen (Riso−Denmark)
D. R. Vondy (ORNL)
M. R. Wagner (KWU)
W. Werner (GRS−Munich)
#
Date Accepted : June 1977 By: H. L . Dodds , Jr . (U. of Tenn .)
M. V. Gregory (SRL)
#
Descriptive Tit le : Two−dimensional LWR Problem ,
also 2D IAEA Benchmark Problem
#
Reduction of Source Situation
1. Two−groupo diffusion theory
2. Two−dimensional (x ,y)−geometry
#
PROBLEM neutron_diffusion 2D GROUPS 2
DEFAULT_ARGUMENT_VALUE 1 quarter # either quarter or eigth
READ_MESH iaea-2dpwr-$1.msh

define materials and cross sections according to the two−group constants
each material corresponds to a physical entity in the geometry f i l e
Bg2 = 0.8e-4 # axial geometric buckling in the z direction
MATERIAL fuel1 {
D1=1.5 Sigma_a1=0.010+D1(x,y)*Bg2 Sigma_s1.2=0.02
D2=0.4 Sigma_a2=0.080+D2(x,y)*Bg2 nuSigma_f2=0.135 }#eSigmaF_2 nuSigmaF_2(x ,y) }

MATERIAL fuel2 {
D1=1.5 Sigma_a1=0.010+D1(x,y)*Bg2 Sigma_s1.2=0.02
D2=0.4 Sigma_a2=0.085+D2(x,y)*Bg2 nuSigma_f2=0.135 }#eSigmaF_2 nuSigmaF_2(x ,y) }

MATERIAL fuel2rod {
D1=1.5 Sigma_a1=0.010+D1(x,y)*Bg2 Sigma_s1.2=0.02
D2=0.4 Sigma_a2=0.130+D2(x,y)*Bg2 nuSigma_f2=0.135 }#eSigmaF_2 nuSigmaF_2(x ,y) }

MATERIAL reflector {
D1=2.0 Sigma_a1=0.000+D1(x,y)*Bg2 Sigma_s1.2=0.04
D2=0.3 Sigma_a2=0.010+D2(x,y)*Bg2 }

define boundary conditions as requested by the problem
BC external vacuum=0.4692 # ”external” i s the name of the entity in the . geo
BC mirror mirror # the f i r s t mirror i s the name, the second is the BC type

set the power setpoint equal to the volume of the core
(and set eSigmaF_2 = nuSigmaF_2 as above)
power = 17700

SOLVE_PROBLEM # solve !
PRINT %.5f "keff = " keff
WRITE_MESH iaea-2dpwr-$1.vtk phi1 phi2

/ / 2/20

Neutron diffusion

1

2
3

4

10 7030 50 90 110 130 150 170 cm

10

70

90

130

150

170

cm

3

3 2 3 4 5 6 7 8 9

11 12 13 14 15 16 17

19 20 21 22 23 24

26 27 28 29 30

32 33 34

36 37

10

18

25

31

35

38

1

Figure 1: The IAEA 2D PWR Benchmark

/ / 3/20

Neutron diffusion

$ gmsh -2 iaea-2dpwr-quarter.geo
$ [...]
$ gmsh -2 iaea-2dpwr-eighth.geo
$ [...]
$ feenox iaea-2dpwr.fee quarter
keff = 1.02986
$ feenox iaea-2dpwr.fee eighth
keff = 1.02975
$

Figure 2: Fast and thermal flux for the 2D IAEA PWR benchmark

2 IAEA 3D PWR Benchmark

The IAEA 3D PWR Benchmark is a classical problem for core-level diffusion codes. The original geometry,
cross sections and boundary conditions are shown in figs. 3, 4, 5.

/ / 4/20

Neutron diffusion

Figure 3: The IAEA 3D PWR Benchmark, fig. 1

/ / 5/20

Neutron diffusion

Figure 4: The IAEA 3D PWR Benchmark, fig. 2

/ / 6/20

Neutron diffusion

Figure 5: The IAEA 3D PWR Benchmark, fig. 3

/ / 7/20

Neutron diffusion

The FeenoX approach consists of modeling both the original one-quarter-symmetric geometry and the more
reasonable one-eighth-symmetry geometry in a 3D CAD cloud tool such as Onshape (figs. 6, 7). Then, the
CAD is imported and meshed in Gmsh to obtain a second-order unstructured tetrahedral grids suitable to be
used by FeenoX to solve the multi-group neutron diffusion equation (figs. 8, 9)

Figure 6: IAEA 3D PWR one-quarter CAD in Onshape (“fuel 2” is hidden)

The terminal mimic shows that the eighth case can be solved faster and needs less memory than the original
quarter-symmetry case. Recall that the original problem does have 1/8th symmetry but since historically all
core-level solvers can only handle structured hexahedral grids, nobody ever took advantage of it.
BENCHMARK PROBLEM
#
Identification : 11
Date Submitted : June 1976 By: R. R. Lee (CE)
D. A. Menely (Ontario Hydro)
B. Micheelsen (Riso−Denmark)
D. R. Vondy (ORNL)
M. R. Wagner (KWU)
W. Werner (GRS−Munich)
#
Date Accepted : June 1977 By: H. L . Dodds , Jr . (U. of Tenn .)
M. V. Gregory (SRL)
#
Descriptive Tit le : Multi−dimensional (x−y−z) LWR model
#
Suggested Functions : Designed to provide a sever tes t for
the capabil it ies of coarse mesh
methods and flux synthesis approximations

/ / 8/20

Neutron diffusion

Figure 7: IAEA 3D PWR one-eighth CAD in Onshape (“fuel 2” is hidden)

#
Configuration : Three−dimensional configuration
including space dimensions and region
numbers : 2 Figures
t0 = clock() # start measuring wall time
PROBLEM neutron_diffusion 3D GROUPS 2

DEFAULT_ARGUMENT_VALUE 1 quarter
READ_MESH iaea-3dpwr-$1.msh

MATERIAL fuel1 D1=1.5 D2=0.4 Sigma_s1.2=0.02 Sigma_a1=0.01 Sigma_a2=0.08 nuSigma_f2=0.135
MATERIAL fuel2 D1=1.5 D2=0.4 Sigma_s1.2=0.02 Sigma_a1=0.01 Sigma_a2=0.085 nuSigma_f2=0.135
MATERIAL fuel2rod D1=1.5 D2=0.4 Sigma_s1.2=0.02 Sigma_a1=0.01 Sigma_a2=0.13 nuSigma_f2=0.135
MATERIAL reflector D1=2.0 D2=0.3 Sigma_s1.2=0.04 Sigma_a1=0 Sigma_a2=0.01 nuSigma_f2=0
MATERIAL reflrod D1=2.0 D2=0.3 Sigma_s1.2=0.04 Sigma_a1=0 Sigma_a2=0.055 nuSigma_f2=0

BC vacuum vacuum=0.4692
BC mirror mirror

SOLVE_PROBLEM
WRITE_RESULTS FORMAT vtk

print results
PRINT SEP " " " keff = " %.5f keff
PRINT SEP " " " nodes = " %g nodes
PRINT SEP " " "memory = " %.1f memory() "Gb"
PRINT SEP " " " wall = " %.1f clock()-t0 "sec"

/ / 9/20

Neutron diffusion

(a) Full view (b) Cutaway view

Figure 8: Unstructured second-order tetrahedral grid for the quarter case

/ / 10/20

Neutron diffusion

(a) Full view (b) Cutaway view

Figure 9: Unstructured second-order tetrahedral grid for the eighth case
/ / 11/20

Neutron diffusion

$ gmsh -3 iaea-3dpwr-quarter.geo
$ [...]
$ gmsh -3 iaea-3dpwr-eighth.geo
$ [...]
$ feenox iaea-3dpwr.fee quarter
keff = 1.02918
nodes = 70779
memory = 3.9 Gb
wall = 33.8 sec

$ feenox iaea-3dpwr.fee eighth
keff = 1.02912
nodes = 47798
memory = 2.5 Gb
wall = 16.0 sec

$

(a) (b) (c)

Figure 10: Fast flux for the 3D IAEA PWR benchmark in 1/8th symmetry

3 Cube-spherical bare reactor

It is easy to compute the effective multiplication factor of a one-group bare cubical reactor. Or a spherical
reactor. And we know that for the same mass, the keff for the former is smaller than for the latter.

But what happens “in the middle”? That is to say, how does keff changes when we morph the cube into a

/ / 12/20

Neutron diffusion

(a) (b) (c)

Figure 11: Thermal flux for the 3D IAEA PWR benchmark in 1/8th symmetry

(a) Cubical reactor (b) Spherical reactor

Figure 12: One eight of two bare reactors

/ / 13/20

Neutron diffusion

sphere? Enter Gmsh & Feenox.

(a) 75% cube/25% sphere (b) 50% cube/50% sphere (c) 25% cube/75% sphere

Figure 13: Continuous morph between a cube and a sphere

import os
import math
import gmsh

def create_mesh(vol, F):
gmsh.initialize()
gmsh.option.setNumber("General.Terminal", 0)

f = 0.01*F
a = (vol / (1/8*4/3*math.pi*f**3 + 3*1/4*math.pi*f**2*(1-f) + 3*f*(1-f)**2 + (1-f)**3))**(1.0/3.0)

internal = []
gmsh.model.add("cubesphere")
if (F < 1):
a cube
gmsh.model.occ.addBox(0, 0, 0, a, a, a, 1)
internal = [1,3,5]
external = [2,4,6]

elif (F > 99):
a sphere
gmsh.model.occ.addSphere(0, 0, 0, a, 1, 0, math.pi/2, math.pi/2)
internal = [2,3,4]
external = [1]

else:
gmsh.model.occ.addBox(0, 0, 0, a, a, a, 1)
gmsh.model.occ.fillet([1], [12, 7, 6], [f*a], True)
internal = [1,4,6]
external = [2,3,5,7,8,9,10]

gmsh.model.occ.synchronize()

gmsh.model.addPhysicalGroup(3, [1], 1)
gmsh.model.setPhysicalName(3, 1, "fuel")

/ / 14/20

Neutron diffusion

gmsh.model.addPhysicalGroup(2, internal, 2)
gmsh.model.setPhysicalName(2, 2, "internal")
gmsh.model.addPhysicalGroup(2, external, 3)
gmsh.model.setPhysicalName(2, 3, "external")

gmsh.model.occ.synchronize()

gmsh.option.setNumber("Mesh.ElementOrder", 2)
gmsh.option.setNumber("Mesh.Optimize", 1)
gmsh.option.setNumber("Mesh.OptimizeNetgen", 1)
gmsh.option.setNumber("Mesh.HighOrderOptimize", 1)

gmsh.option.setNumber("Mesh.CharacteristicLengthMin", a/10);
gmsh.option.setNumber("Mesh.CharacteristicLengthMax", a/10);

gmsh.model.mesh.generate(3)
gmsh.write("cubesphere-%g.msh"%(F))

gmsh.model.remove()
#gmsh. f l tk . run()

gmsh.finalize()
return

def main():

vol0 = 100**3

for F in range(0,101,5): # mesh refinement level
create_mesh(vol0, F)
TODO: FeenoX Python API !
os.system("feenox cubesphere.fee %g"%(F))

if __name__ == "__main__":
main()

PROBLEM neutron_diffusion DIMENSIONS 3
READ_MESH cubesphere-$1.msh DIMENSIONS 3

MATERIAL fuel
D1 = 1.03453E+00
Sigma_a1 = 5.59352E-03
nuSigma_f1 = 6.68462E-03
Sigma_s1.1 = 3.94389E-01

PHYSICAL_GROUP fuel DIM 3
BC internal mirror
BC external vacuum

SOLVE_PROBLEM

PRINT HEADER $1 keff 1e5*(keff-1)/keff fuel_volume

$ python cubesphere.py | tee cubesphere.dat
0 1.05626 5326.13 1e+06
5 1.05638 5337.54 999980

/ / 15/20

Neutron diffusion

10 1.05675 5370.58 999980
15 1.05734 5423.19 999992
20 1.05812 5492.93 999995
25 1.05906 5576.95 999995
30 1.06013 5672.15 999996
35 1.06129 5775.31 999997
40 1.06251 5883.41 999998
45 1.06376 5993.39 999998
50 1.06499 6102.55 999998
55 1.06619 6208.37 999998
60 1.06733 6308.65 999998
65 1.06839 6401.41 999999
70 1.06935 6485.03 999998
75 1.07018 6557.96 999998
80 1.07088 6618.95 999998
85 1.07143 6666.98 999999
90 1.07183 6701.24 999999
95 1.07206 6721.33 999998
100 1.07213 6727.64 999999
$

Figure 14: Static reactivity vs. percentage of sphericity

4 Illustration of the XS dilution & smearing effect
The best way to solve a problem is to avoid it in the first place.

Richard M. Stallman

Let us consider a two-zone slab reactor:

a. Zone A has k∞ < 1 and extends from x = 0 to x = a.
b. Zone B has k∞ > 1 and extends from x = a to x = b.

• The slab is solved with a one-group diffusion approach.

/ / 16/20

Neutron diffusion

• Both zones have uniform macroscopic cross sections.
• Flux ϕ is equal to zero at both at x = 0 and at x = b.

Under these conditions, the overall analytical effective multiplication factor is keff such that

√
DA ·

(
ΣaA − νΣfA

keff

)
· tan

[√
1

DB
·
(

νΣfB

keff
− ΣaB

)
· (a − b)

]

=
√

DB ·
(

νΣfB

keff
− ΣaB

)
· tanh

[√
1

DA
·
(

ΣaA − νΣfA

keff

)
· b

]

We can then compare the numerical keff computed using…

i. a non-uniform grid with n + 1 nodes such that there is a node exactly at x = b.
ii. an uniform grid (mimicking a neutronic code that cannot handle case i.) with n uniformly-spaced el-

ements. The element that contains point x = b is assigned to a pseudo material AB that linearly
interpolates the macroscopic cross sections according to where in the element the point x = b lies. That
is to say, if the element width is 10 and b = 52 then this AB material will be 20% of material A and 80%
of material B.
The objective of this example is to show that case i. will monotonically converge to the analytical
multiplication factor as n → ∞ while case ii. will show a XS dilution and smearing effect. FeenoX
of course can solve both cases, but there are many other neutronic tools out there that can handle
ony structured grids.

! / bin /bash

b="100" # total width of the slab
if [-z $1]; then
n="10" # number of ce l l s

else
n=$1

fi

rm -rf two-zone-slab-*-${n}.dat

sweep a (width of f i r s t material) between 10 and 90
for a in $(seq 35 57); do
cat << EOF > ab.geo

a = ${a};
b = ${b};
n = ${n};
lc = b/n;
EOF
for m in uniform nonuniform; do
gmsh -1 -v 0 two-zone-slab-${m}.geo
feenox two-zone-slab.fee ${m} | tee -a two-zone-slab-${m}-${n}.dat

done
done

PROBLEM neutron_diffusion 1D
DEFAULT_ARGUMENT_VALUE 1 nonuniform

/ / 17/20

Neutron diffusion

READ_MESH two-zone-slab-$1.msh

this ab . geo is created from the driving shell script
INCLUDE ab.geo

pure material A from x=0 to x=a
D1_A = 0.5
Sigma_a1_A = 0.014
nuSigma_f1_A = 0.010

pure material B from x=a to x=b
D1_B = 1.2
Sigma_a1_B = 0.010
nuSigma_f1_B = 0.014

meta−material (only used for uniform grid to i l lus t rate XS dilution)
a_left = floor(a/lc)*lc;
xi = (a - a_left)/lc
Sigma_tr_A = 1/(3*D1_A)
Sigma_tr_B = 1/(3*D1_B)
Sigma_tr_AB = xi*Sigma_tr_A + (1-xi)*Sigma_tr_B
D1_AB = 1/(3*Sigma_tr_AB)
Sigma_a1_AB = xi * Sigma_a1_A + (1-xi)*Sigma_a1_B
nuSigma_f1_AB = xi * nuSigma_f1_A + (1-xi)*nuSigma_f1_B

BC left null
BC right null

SOLVE_PROBLEM

compute the analytical keff
F1(k) = sqrt(D1_A*(Sigma_a1_A-nuSigma_f1_A/k)) * tan(sqrt((1/D1_B)*(nuSigma_f1_B/k-Sigma_a1_B))*(a-b))
F2(k) = sqrt(D1_B*(nuSigma_f1_B/k-Sigma_a1_B)) * tanh(sqrt((1/D1_A)*(Sigma_a1_A-nuSigma_f1_A/k))*b)
k = root(F1(k)-F2(k), k, 1, 1.2)

and the fluxes (not needed here but for reference)
B_A = sqrt ((Sigma_a1_A − nuSigma_f1_A/k) /D1_A)
fluxA(x) = sinh (B_A∗x)
#
B_B = sqrt ((nuSigma_f1_B/k − Sigma_a1_B) /D1_B)
fluxB(x)= sinh (B_A∗b) / sin (B_B∗(a−b)) ∗ sin (B_B∗(a−x))
#
normalization factor
f = a/ (integral (fluxA(x) , x , 0 , b) + integral (fluxB(x) , x , b , a))
flux (x) := f ∗ i f (x < b , fluxA(x) , fluxB(x))

PRINT a keff k keff-k b n lc nodes

PRINT_FUNCTION flux MIN 0 MAX a STEP a/1000 FILE_PATH two−zone−analytical . dat
PRINT_FUNCTION phi1 phi1 (x)−flux (x) FILE_PATH two−zone−numerical . dat

$./two-zone-slab.sh 10
[...]
$./two-zone-slab.sh 20
[...]
$ pyxplot two-zone-slab.ppl
$

/ / 18/20

Neutron diffusion

Figure 15: keff vs. a

To illustrate the point of this example, think about the following 2D case:

1. How would you solve something like this with a neutronic tool that only allowed structured
grids?

2. Even if the two control rods were not slanted, as long as they were not inserted up to the
same height there would be XS dilution & semaring when using a structured grid (even if
the tool allows non-uniform cells in each direction).

3. Consider RMS’s quotation above: the best way to solve a problem (i.e. XS dilution) is to avoid
it in the first place (i.e. to use a tool able to handle unstructured grids).

/ / 19/20

Neutron diffusion

Figure 16: Error vs. a

/ / 20/20

	IAEA 2D PWR Benchmark
	IAEA 3D PWR Benchmark
	Cube-spherical bare reactor
	Illustration of the XS dilution & smearing effect

