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1 NAFEMS LE10 “Thick plate pressure” benchmark

Figure 1: The NAFEMS LE10 problem statement and the corresponding FeenoX input

Assuming the CAD has already been created in STEP format (for instance using Gmsh with this geo file),
create a tetrahedral locally-refined unstructured grid with Gmsh using the following .geo file:
/ / NAFEMS LE10 benchmark unstructured locally−refined tetrahedral mesh
Merge "nafems-le10.step"; / / load the CAD

/ / define physical names from the geometrical entity ids
Physical Surface("upper") = {7};
Physical Surface("DCD'C'") = {1};
Physical Surface("ABA'B'") = {3};
Physical Surface("BCB'C'") = {4, 5};
Physical Curve("midplane") = {14};
Physical Volume("bulk") = {1};

/ / meshing settings , read Gmsh' manual for further reference
Mesh.ElementOrder = 2; / / use second−order tetrahedra
Mesh.Algorithm = 6; / / 2D mesh algorithm : 6: Frontal Delaunay
Mesh.Algorithm3D = 10; / / 3D mesh algorithm : 10: HXT
Mesh.Optimize = 1; / / Optimize the mesh
Mesh.HighOrderOptimize = 1; / / Optimize high−order meshes? 2: e last ic+optimization

Mesh.MeshSizeMax = 80; / / main element size
Mesh.MeshSizeMin = 20; / / refined element size
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/ / local refinement around the point D ( entity 4)
Field[1] = Distance;
Field[1].NodesList = {4};
Field[2] = Threshold;
Field[2].IField = 1;
Field[2].LcMin = Mesh.MeshSizeMin;
Field[2].LcMax = Mesh.MeshSizeMax;
Field[2].DistMin = 2 * Mesh.MeshSizeMax;
Field[2].DistMax = 6 * Mesh.MeshSizeMax;
Background Field = {2};

and then use this pretty-straightforward input file that has a one-to-one correspondence with the original
problem formulation from 1990:
# NAFEMS Benchmark LE−10: thick plate pressure
PROBLEM mechanical 3D
READ_MESH nafems-le10.msh # mesh in millimeters

# LOADING: uniform normal pressure on the upper surface
BC upper p=1 # 1 Mpa

# BOUNDARY CONDITIONS:
BC DCD'C' v=0 # Face DCD'C' zero y−displacement
BC ABA'B' u=0 # Face ABA'B' zero x−displacement
BC BCB'C' u=0 v=0 # Face BCB'C' x and y displ . fixed
BC midplane w=0 # z displacements fixed along mid−plane

# MATERIAL PROPERTIES: isotropic single−material properties
E = 210e3 # Young modulus in MPa
nu = 0.3 # Poisson ' s ratio

SOLVE_PROBLEM # solve !

# print the direct s tress y at D (and nothing more)
PRINT "sigma_y @ D = " sigmay(2000,0,300) "MPa"

# write post−processing data for paraview
WRITE_MESH nafems-le10.vtk sigmay VECTOR u v w

$ gmsh -3 nafems-le10.geo
[...]
$ feenox nafems-le10.fee
sigma_y @ D = -5.38016 MPa
$

2 NAFEMS LE11 “Solid Cylinder/Taper/Sphere-Temperature” benchmark

Following the spirit from LE10, note how easy it is to give a space-dependent temperature field in FeenoX. Just
write

√
x2 + y2 + z like sqrt(x^2 + y^2)+ z!

# NAFEMS Benchmark LE−11: solid cylinder / taper / sphere−temperature
PROBLEM mechanical 3D
READ_MESH nafems-le11.msh
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Figure 2: Normal stress σy refined around point D over 5,000x-warped displacements for LE10 created with Paraview

# linear temperature gradient in the radial and axial direction
# as an algebraic expression as human−friendly as i t can be
T(x,y,z) := sqrt(x^2 + y^2) + z

BC xz v=0 # displacement vector i s [u, v ,w]
BC yz u=0 # u = displacement in x
BC xy w=0 # v = displacement in y
BC HIH'I' w=0 # w = displacement in z

E = 210e3*1e6 # mesh is in meters , so E=210e3 MPa −> Pa
nu = 0.3 # dimensionless
alpha = 2.3e-4 # in 1/ºC as in the problem
SOLVE_PROBLEM

# for post−processing in Paraview
WRITE_MESH nafems-le11.vtk VECTOR u v w T sigmax sigmay sigmaz

PRINT "sigma_z(A) =" %.2f sigmaz(1,0,0)/1e6 "MPa" SEP " "
PRINT "wall time  =" %.2f wall_time() "seconds" SEP " "

$ gmsh -3 nafems-le11.geo
[...]
$ feenox nafems-le11.fee
sigma_z(A) = -105.04 MPa
wall time = wall time = 1.91 seconds
$
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(a) Problem statement (b) Structured hex mesh

Figure 3: The NAFEMS LE11 problem formulation
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(a) Problem statement (b) Structured hex mesh

Figure 4: The NAFEMS LE11 problem results

3 NAFEMS LE1 “Elliptical membrane” plane-stress benchmark

Tell FenooX the problem is plane_stress. Use the nafems-le1.geo file provided to create the mesh. Read it with
READ_MESH, set material properties, BCs and SOLVE_PROBLEM!
PROBLEM mechanical plane_stress
READ_MESH nafems-le1.msh

E = 210e3
nu = 0.3

BC AB u=0
BC CD v=0
BC BC tension=10

SOLVE_PROBLEM

WRITE_MESH nafems-le1.vtk VECTOR u v 0 sigmax sigmay tauxy
PRINT "σy at point D = " %.4f sigmay(2000,0) "(reference is 92.7)" SEP " "

$ gmsh -2 nafems-le11.geo
[...]
$ feenox nafems-le1.feeσ
y at point D = 92.7011 (reference is 92.7)
$
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Figure 5: The NAFEMS LE1 problem
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Figure 6: Normal stress σy over 500x-warped displacements for LE1 created with Paraview
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4 Parametric study on a cantilevered beam

If an external loop successively calls FeenoXwith extra command-line arguments, a parametric run is obtained.
This file cantilever.fee fixes the face called “left” and sets a load in the negative z direction of a mesh called
cantilever-$1-$2.msh, where $1 is the first argument after the inpt file and $2 the second one. The output is a single
line containing the number of nodes of the mesh and the displacement in the vertical direction w(500, 0, 0) at
the center of the cantilever’s free face.

The following Bash script first calls Gmsh to create the meshes. To do so, it first starts with a base cantilever ←↩

.geo file that creates the CAD:
/ / https : / / autofem .com/examples / determining_natural_frequencie . html
SetFactory("OpenCASCADE");

L = 0.5;
b = 0.05;
h = 0.02;

Box(1) = {0,-b/2,-h/2, L, b, h};

Physical Surface("left") = {1};
Physical Surface("right") = {2};
Physical Surface("top") = {4};
Physical Volume("bulk") = {1};

Transfinite Curve {1, 3, 5, 7} = 1/(Mesh.MeshSizeFactor*Mesh.ElementOrder) + 1;
Transfinite Curve {2, 4, 6, 8} = 2/(Mesh.MeshSizeFactor*Mesh.ElementOrder) + 1;
Transfinite Curve {9, 10, 11, 12} = 16/(Mesh.MeshSizeFactor*Mesh.ElementOrder) + 1;

Transfinite Surface "*";
Transfinite Volume "*";

Then another .geo file is merged to build cantilever-${element}-${c}.msh where

• ${element}: tet4, tet10, hex8, hex20, hex27
• ${c}: 1,2,. . .,10

(a) Tetrahedra (b) Hexahedra

Figure 7: Cantilevered beam meshed with structured tetrahedra and hexahedra
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It then calls FeenoX with the input cantilever.fee and passes ${element} and ${c} as extra arguments, which
then are expanded as $1 and $2 respectively.

# ! / bin /bash

rm -f *.dat
for element in tet4 tet10 hex8 hex20 hex27; do
for c in $(seq 1 10); do

# create mesh i f not alreay cached
mesh=cantilever-${element}-${c}
if [ ! -e ${mesh}.msh ]; then
scale=$(echo "PRINT 1/${c}" | feenox -)
gmsh -3 -v 0 cantilever-${element}.geo -clscale ${scale} -o ${mesh}.msh

fi

# cal l FeenoX
feenox cantilever.fee ${element} ${c} | tee -a cantilever-${element}.dat

done
done

After the execution of the Bash script, thanks to the design decision that output is 100% defined by the user (in
this case with the PRINT instruction), one has several files cantilever-${element}.dat files. When plotted, these
show the shear locking effect of fully-integrated first-order elements. The theoretical Euler-Bernoulli result
is just a reference as, among other things, it does not take into account the effect of the material’s Poisson’s
ratio. Note that the abscissa shows the number of nodes, which are proportional to the number of degrees of
freedom (i.e. the size of the problem matrix) and not the number of elements, which is irrelevant here and in
most problems.
PROBLEM mechanical 3D
READ_MESH cantilever-$1-$2.msh # in meters

E = 2.1e11 # Young modulus in Pascals
nu = 0.3 # Poisson ' s ratio

BC left fixed
BC right tz=-1e5 # traction in Pascals , negative z

SOLVE_PROBLEM

# z−displacement (components are u, v ,w) at the tip vs . number of nodes
PRINT nodes %e w(500,0,0) "\# $1 $2"

$ ./cantilever.sh
102 -7.641572e-05 # tet4 1
495 -2.047389e-04 # tet4 2
1372 -3.149658e-04 # tet4 3
[...]
19737 -5.916234e-04 # hex27 8
24795 -5.916724e-04 # hex27 9
37191 -5.917163e-04 # hex27 10
$ pyxplot cantilever.ppl
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Figure 8: Displacement at the free tip of a cantilevered beam vs. number of nodes for different element types

5 Parallelepiped whose Young’s modulus is a function of the temperature

Theproblem consists of finding the non-dimensional temperatureT and displacements u, v andw distributions
within a solid parallelepiped of length l whose base is a square of h × h. The solid is subject to heat fluxes
and to a traction pressure at the same time. The non-dimensional Young’s modulus E of the material depends
on the temperature T in a know algebraically way, whilst both the Poisson coefficient ν and the thermal
conductivity k are uniform and do not depend on the spatial coordinates:

E(T ) = 1000
800 − T

ν = 0.3
k = 1

References:

• http://www.code-aster.org/V2/doc/default/fr/man_v/v7/v7.03.100.pdf
• https://www.seamplex.com/docs/SP-FI-17-BM-12F2-A.pdf

This thermo-mechanical problem is solved in two stages. First, the heat conduction equation is solved over a
coarse first-order mesh to find the non-dimensional temperature distribution. Then, a mechanical problem is
solved where T (x, y, z) is read from the first mesh and interpolated into a finer second-order mesh so to as
evaluate the non-dimensional Young’s modulus as
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Figure 9: Original figure from v7.03.100.pdf

E
(
T (x, y, z)

)
= 1000

800 − T (x, y, z)

Note that there are not thermal expansion effects (i.e. the thermal expansion coefficient is α = 0). Yet, suprins-
ingly enough, the problem has analytical solutions for both the temperature and the displacement fields.

5.1 Thermal problem

The following input solves the thermal problem over a coarse first-ordermesh, writes the resulting temperature
distribution into parallelepiped-temperature.msh, and prints the L2 error of the numerical result with respect to
the analytical solution T (x, y, z) = 40 − 2x − 3y − 4z.
PROBLEM thermal 3D
READ_MESH parallelepiped-coarse.msh

k = 1 # unitary non−dimensional thermal conductivity

# boundary conditions
BC left q=+2
BC right q=-2
BC front q=+3
BC back q=-3
BC bottom q=+4
BC top q=-4
BC A T=0

SOLVE_PROBLEM
WRITE_MESH parallelepiped-temperature.msh T
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# compute the L−2 norm of the error in the displacement f ie ld
Te(x,y,z) = 40 - 2*x - 3*y - 4*z # analytical solution , ”e” means exact
INTEGRATE (T(x,y,z)-Te(x,y,z))^2 RESULT num
PHYSICAL_GROUP bulk DIM 3 # this i s just to compute the volume
PRINT num/bulk_volume

$ gmsh -3 parallelepiped.geo -order 1 -clscale 2 -o parallelepiped-coarse.msh
[...]
Info : 117 nodes 567 elements
Info : Writing 'parallelepiped-coarse.msh'...
Info : Done writing 'parallelepiped-coarse.msh'
Info : Stopped on Fri Dec 10 10:32:30 2021 (From start: Wall 0.0386516s, CPU 0.183052s)
$ feenox parallelepiped-thermal.fee
6.18981e-12
$

Figure 10: Temperature distribution over the coarse mesh in Gmsh (yes, it is a rainbow pallete)
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5.2 Mechanical problem

Now this input file reads the scalar function T stored in the coarse first-order mesh file parallelepiped- ←↩

temperature.msh and uses it to solve the mechanical problem in the finer second-order mesh parallelepiped. ←↩

msh. The numerical solution for the displacements over the fine mesh is written in a VTK file (along with the
temperature as interpolated from the coarse mesh) and compared to the analytical solution using the L2 norm.
PROBLEM mechanical 3D

# this i s where we solve the mechanical problem
READ_MESH parallelepiped.msh MAIN

# this i s where we read the temperature from
READ_MESH parallelepiped-temperature.msh DIM 3 READ_FUNCTION T

# mechanical properties
E(x,y,z) = 1000/(800-T(x,y,z)) # young ' s modulus
nu = 0.3 # poisson ' s ratio

# boundary conditions
BC O fixed
BC B u=0 w=0
BC C u=0

# here ”load” is a fantasy name applied to both ” l e f t ” and ”right ”
BC load tension=1 PHYSICAL_GROUP left PHYSICAL_GROUP right

SOLVE_PROBLEM
WRITE_MESH parallelepiped-mechanical.vtk T VECTOR u v w

# analytical solutions
h = 10
A = 0.002
B = 0.003
C = 0.004
D = 0.76

# the ”e” means exact
ue(x,y,z) := A/2*(x^2 + nu*(y^2+z^2)) + B*x*y + C*x*z + D*x - nu*A*h/4*(y+z)
ve(x,y,z) := -nu*(A*x*y + B/2*(y^2-z^2+x^2/nu) + C*y*z + D*y -A*h/4*x - C*h/4*z)
we(x,y,z) := -nu*(A*x*z + B*y*z + C/2*(z^2-y^2+x^2/nu) + D*z + C*h/4*y - A*h/4*x)

# compute the L−2 norm of the error in the displacement f ie ld
INTEGRATE (u(x,y,z)-ue(x,y,z))^2+(v(x,y,z)-ve(x,y,z))^2+(w(x,y,z)-we(x,y,z))^2 RESULT num MESH ←↩

parallelepiped.msh
INTEGRATE 1 RESULT den MESH parallelepiped.msh
PRINT num/den

$ gmsh -3 parallelepiped.geo -order 2
[...]
Info : 2564 nodes 2162 elements
Info : Writing 'parallelepiped.msh'...
Info : Done writing 'parallelepiped.msh'
Info : Stopped on Fri Dec 10 10:39:27 2021 (From start: Wall 0.165707s, CPU 0.258751s)
$ feenox parallelepiped-mechanical.fee
1.46196e-06
$
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Figure 11: Displacements and temperature distribution over the fine mesh in Paraview (yes, still a rainbow pallete)

6 Orthotropic free expansion of a cube

To illustrate the point of the previous discussion, let us solve the thermal expansion of an unrestrained unitary
cube [0, 1 mm] × [0, 1 mm] × [0, 1 mm] subject to a linear radially-symmetric temperature field

T (x, y, z) = 30ºC + 150 ºC
mm

√
x2 + y2 + z2

with a mean thermal expansion coefficient for each of the three directions x, y and z computed from each of
the three columns of the ASME table TE-2, respectively. If the data was consistent, the displacement at any
point with the same coordinates x = y = z would be exactly equal.
DEFAULT_ARGUMENT_VALUE 1 steffen
DEFAULT_ARGUMENT_VALUE 2 hex

PROBLEM mechanical
READ_MESH cube-$2.msh

# aluminum−like linear isotropic material properties
E = 69e3
nu = 0.28

# free expansion
BC left u=0
BC front v=0
BC bottom w=0
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# reference temperature i s 20ºC
T0 = 20
# spatial temperature distribution symmetric wrt x ,y & z
T(x,y,z) = 30+150*sqrt(x^2+y^2+z^2)

# read ASME data
FUNCTION A(T') FILE asme-expansion-table.dat COLUMNS 1 2 INTERPOLATION $1
FUNCTION B(T') FILE asme-expansion-table.dat COLUMNS 1 3 INTERPOLATION $1
FUNCTION C(T') FILE asme-expansion-table.dat COLUMNS 1 4 INTERPOLATION $1

# remember that the thermal expansion coeff ic ients have to be
# 1. the mean value between T0 and T
# 2. functions of space , so temperature has to be written as T(x ,y , z)

# in the x direction , we use column B directly
alpha_x(x,y,z) = 1e-6*B(T(x,y,z))

# in the y direction , we convert column A to mean
alpha_y(x,y,z) = 1e-6*integral(A(T'), T', T0, T(x,y,z))/(T(x,y,z)-T0)

# in the z direction , we convert column C to mean
alpha_z(x,y,z) = 1e-3*C(T(x,y,z))/(T(x,y,z)-T0)

SOLVE_PROBLEM

WRITE_MESH cube-orthotropic-expansion-$1-$2.vtk T VECTOR u v w
PRINT %.3e "displacement in x at (1,1,1) = " u(1,1,1)
PRINT %.3e "displacement in y at (1,1,1) = " v(1,1,1)
PRINT %.3e "displacement in z at (1,1,1) = " w(1,1,1)

$ gmsh -3 cube-hex.geo
[...]
$ gmsh -3 cube-tet.geo
[...]
$ feenox cube-orthotropic-expansion.fee
displacement in x at (1,1,1) = 4.451e-03
displacement in y at (1,1,1) = 4.449e-03
displacement in z at (1,1,1) = 4.437e-03
$ feenox cube-orthotropic-expansion.fee linear tet
displacement in x at (1,1,1) = 4.452e-03
displacement in y at (1,1,1) = 4.447e-03
displacement in z at (1,1,1) = 4.438e-03
$ feenox cube-orthotropic-expansion.fee akima hex
displacement in x at (1,1,1) = 4.451e-03
displacement in y at (1,1,1) = 4.451e-03
displacement in z at (1,1,1) = 4.437e-03
$ feenox cube-orthotropic-expansion.fee splines tet
displacement in x at (1,1,1) = 4.451e-03
displacement in y at (1,1,1) = 4.450e-03
displacement in z at (1,1,1) = 4.438e-03
$

Differences cannot be seen graphically, but they are there as the terminal mimic illustrates. Yet,
they are not as large nor as sensible to meshing and interpolation settings as one would have
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Figure 12: Warped displacement (×500) of the cube using ASME’s three columns.
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expected after seeing the plots from the previous section.

7 Thermo-elastic expansion of finite cylinders

Let us solve the following problem introduced by J. Veeder in his technical report AECL-2660 from 1967.

Consider a finite solid cylinder (see insert) of radius b and length 2h, with the origin of coordinates
at the centre. It may be shown that the temperature distribution in a cylindrical fuel pellet operating
in a reactor is given approximately by

T (r) = T0 + T1 ·
[
1 −

(
r

b

)2
]

where T0 is the pellet surface temperature and T1 is the temperature difference between the centre
and surface. The thermal expansion is thus seen to be the sum of two terms, the first of which
produces uniform expansion (zero stress) at constant temperature T0, and is therefore computa-
tionally trivial. Tho second term introduces non-uniform body forces which distort the pellet from
its original cylindrical shape.

The problem is axisymmetric on the azimutal angle and axially-symmetric along the mid-plane. The FeenoX
input uses the tangential and radial boundary conditions applied to the base of the upper half of a 3D cylinder.
The geometry is meshed using 27-noded hexahedra.

Two one-dimensional profiles for the non-dimensional range [0 : 1] at the external surfaces are written into
an ASCII file ready to be plotted:

1. axial dependency of the displacement v(z′) = v(0, v, z′h) in the y direction at fixed x = 0 and y = b,
and

/ / 18/26
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2. radial dependency of the displacement w(r′) = w(0, r′b, h) in the z direction at fixed x = 0 and z = h

These two profiles are compared to the power expansion series given in the original report from 1967. Note
that the authors expect a 5% difference between the reference solution and the real one.

Figure 13: 3D mesh of the upper half of the Veeder problem

PROBLEM mechanical
READ_MESH veeder.msh

b = 1 # cylinder radius
h = 0.5 # cylinder height

E = 1 # young modulus (does not matter for the displacement , only for stresses )
nu = 1/3 # poisson ratio
alpha = 1e-5 # temperature expansion coeff ic ient

# temperature distribution as in the original paper
T1 = 1 # maximum temperature
T0 = 0 # reference temperature (where expansion is zero )
T(x,y,z) := T0 + T1*(1-(x^2+y^2)/(b^2))

# boundary conditions (note that the cylinder can s t i l l expand on the x−y plane)
BC inf tangential radial

# solve !
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SOLVE_PROBLEM

# write vtk output
WRITE_MESH veeder.vtk T sigma dudx dudy dudz dvdx dvdy dvdz dwdx dwdy dwdz sigma1 sigma2 sigma3 ←↩

VECTOR u v w

# non−dimensional numerical displacement profi les
v_num(z') = v(0, b, z'*h)/(alpha*T1*b)
w_num(r') = w(0, r'*b, h)/(alpha*T1*b)

########
# reference solution
# coeff ic ients of displacement functions for h/b = 0.5
a00 = 0.66056
a01 = -0.44037
a10 = 0.23356
a02 = -0.06945
a11 = -0.10417
a20 = 0.00288

b00 = -0.01773
b01 = -0.46713
b10 = -0.04618
b02 = +0.10417
b11 = -0.01152
b20 = -0.00086

# coeff ic ients of displacement functions for h/b = 1.0
# a00 = 0.73197
# a01 = −0.48798
# a10 = 0.45680
# a02 = −0.01140
# a11 = −0.06841
# a20 = 0.13611
#
# b00 = 0.26941
# b01 = −0.45680
# b10 = −0.25670
# b02 = 0.03420
# b11 = −0.27222
# b20 = −0.08167

R(r') = r'^2 - 1
Z(z') = z'^2 - 1

v_ref(r',z') = r' * (a00 + a01*R(r') + a10*Z(z') + a02* R(r')^2 + a11 * R(r')*Z(z') + a20 * Z(z')^2)
w_ref(r',z') = z' * (b00 + b01*R(r') + b10*Z(z') + b02* R(r')^2 + b11 * R(r')*Z(z') + b20 * Z(z')^2)

PRINT_FUNCTION FILE veeder_v.dat v_num v_ref(1,z') MIN 0 MAX 1 NSTEPS 50 HEADER
PRINT_FUNCTION FILE veeder_w.dat w_num w_ref(r',1) MIN 0 MAX 1 NSTEPS 50 HEADER

$ gmsh -3 veeder.geo
[...]
$ feenox veeder.fee
$ pyxplot veeder.ppl
$
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Figure 14: 100,000x-warped displacements

8 Temperature-dependent material properties

Let us solve a plane-strain square fixed on the left, with an horizontal traction on the right and free on the
other two sides. The Young modulus depends on the temperature E(T ) as given in the ASME II part D tables
of material properties, interpolated using a monotonic cubic scheme.

Actually, this example shows three cases:

1. Uniform temperature indentically equal to 200ºC

2. Linear temperature profile on the vertical direction given by an algebraic expression

T (x, y) = 200 + 350 · y

3. The same linear profile but read from the output of a thermal conduction problem over a non-conformal
mesh using this FeenoX input:
PROBLEM thermal 2D
READ_MESH square-centered-unstruct.msh # [−1:+1]x[−1:+1]

BC bottom T=-150
BC top T=+550
k = 1

SOLVE_PROBLEM
WRITE_MESH thermal-square-temperature.msh T

Which of the three cases is executed is given by the first argument provided in the command line after the
main input file. Depending on this argument, which is expanded as $1 in the main input file, either one of
three secondary input files are included:
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Figure 15: Comparison of 1-D displacement profiles
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1. uniform

# uniform
T(x,y) := 200

2. linear

# algebraic expression
T(x,y) := 200 + 350*y

3. mesh

# read the temperature from a previous result
READ_MESH thermal-square-temperature.msh DIM 2 READ_FUNCTION T

# 2d plane strain mechanical problem over the [−1:+1]x[−1:+1] square
PROBLEM mechanical plane_strain
READ_MESH square-centered.msh

# fixed at lef t , uniform traction in the x direction at right
BC left fixed
BC right tx=50

# ASME I I Part D pag . 785 Carbon stee l s with C<=0.30%
FUNCTION E_carbon(temp) INTERPOLATION steffen DATA {
-200 216
-125 212
-75 209
25 202
100 198
150 195
200 192
250 189
300 185
350 179
400 171
450 162
500 151
550 137
}

# read the temperature according to the run−time argument $1
INCLUDE mechanical-square-temperature-$1.fee

# Young modulus is the function above evaluated at the local temperature
E(x,y) := E_carbon(T(x,y))

# uniform Poisson ' s ratio
nu = 0.3

SOLVE_PROBLEM
PRINT u(1,1) v(1,1)
WRITE_MESH mechanical-square-temperature-$1.vtk E T VECTOR u v 0

$ gmsh -2 square-centered.geo
[...]
Info : Done meshing 2D (Wall 0.00117144s, CPU 0.00373s)
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Info : 1089 nodes 1156 elements
Info : Writing 'square-centered.msh'...
Info : Done writing 'square-centered.msh'
Info : Stopped on Thu Aug 4 09:40:09 2022 (From start: Wall 0.00818854s, CPU 0.031239s)
$ feenox mechanical-square-temperature.fee uniform
0.465632 -0.105128
$ feenox mechanical-square-temperature.fee linear
0.589859 -0.216061
$ gmsh -2 square-centered-unstruct.geo
[...]
Info : Done meshing 2D (Wall 0.0274833s, CPU 0.061072s)
Info : 65 nodes 132 elements
Info : Writing 'square-centered-unstruct.msh'...
Info : Done writing 'square-centered-unstruct.msh'
Info : Stopped on Sun Aug 7 18:33:41 2022 (From start: Wall 0.0401667s, CPU 0.107659s)
$ feenox thermal-square.fee
$ feenox mechanical-square-temperature.fee mesh
0.589859 -0.216061
$
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Figure 16: Temperature distribution from a heat conduction problem.
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Figure 17: Young modulus distribution over the final displacements.
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