
Compilation instructions

2024-06-14

Contents

1 Quickstart 2

2 Detailed configuration and compilation 3
2.1 Mandatory dependencies . 3

2.1.1 The GNU Scientific Library . 4
2.2 Optional dependencies . 4

2.2.1 SUNDIALS . 5
2.2.2 PETSc . 5
2.2.3 SLEPc . 5

2.3 FeenoX source code . 6
2.3.1 Git repository . 6
2.3.2 Source tarballs . 6

2.4 Configuration . 6
2.5 Source code compilation . 7
2.6 Test suite . 9
2.7 Installation . 14

3 Advanced settings 15
3.1 Compiling with debug symbols . 15
3.2 Using a different compiler . 15
3.3 Compiling PETSc . 16

2024-06-14 / f2fcb09+dirty

Compilation instructions

These detailed compilation instructions are aimed at amd64 Debian-based GNU/Linux distributions. The
compilation procedure follows the POSIX standard, so it should work in other operating systems and ar-
chitectures as well. Distributions not using apt for packages (i.e. yum) should change the package installation
commands (and possibly the package names). The instructions should also work for in MacOS, although
the apt-get commands should be replaced by brew or similar. Same for Windows under Cygwin, the pack-
ages should be installed through the Cygwin installer. WSL was not tested, but should work as well.

1 Quickstart

Note that the quickest way to get started is to download an already-compiled statically-linked binary
executable. Note that getting a binary is the quickest and easiest way to go but it is the less flexible one.
Mind the following instructions if a binary-only option is not suitable for your workflow and/or you do
need to compile the source code from scratch.

On a GNU/Linux box (preferably Debian-based), follow these quick steps. See sec. 2 for the actual detailed
explanations.

To compile the Git repository, proceed as follows. This procedure does need git and autoconf but new
versions can be pulled and recompiled easily. If something goes wrong and you get an error, do not
hesitate to ask in FeenoX’s discussion page.

1. Install mandatory dependencies

sudo apt-get update
sudo apt-get install gcc make git automake autoconf libgsl-dev

If you cannot install libgsl-dev but still have git and the build toolchain, you can have the configure

script to download and compile it for you. See point 4 below.

2. Install optional dependencies (of course these are optional but recommended)

sudo apt-get install libsundials-dev petsc-dev slepc-dev

3. Clone Github repository

git clone https://github.com/seamplex/feenox

4. Boostrap, configure, compile & make

cd feenox
./autogen.sh
./configure
make -j4

If you cannot (or do not want to) use libgsl-dev from a package repository, call configure with -- ←↩

enable-download-gsl:

./configure --enable-download-gsl

If you do not have Internet access, get the tarball manually, copy it to the same directory as
configure and run again. See the detailed compilation instructions for an explanation.

2024-06-14 / / f2fcb09+dirty 2/16

https://en.wikipedia.org/wiki/POSIX
https://www.cygwin.com/
https://www.seamplex.com/feenox/#download
https://github.com/seamplex/feenox/discussions
compilation.md

Compilation instructions

5. Run test suite (optional)

make check

6. Install the binary system wide (optional)

sudo make install

To stay up to date, pull and then autogen, configure and make (and optionally install):

git pull
./autogen.sh; ./configure; make -j4
sudo make install

2 Detailed configuration and compilation

The main target and development environment is Debian GNU/Linux, although it should be possible to
compile FeenoX in any free GNU/Linux variant (and even the in non-free MacOS and/or Windows plat-
forms) running in virtually any hardware platform. FeenoX can run be run either in HPC cloud servers or
a Raspberry Pi, and almost everything that sits in the middle.

Following the Unix philosophy discussed in the SDS, FeenoX re-uses a lot of already-existing high-quality
free and open source libraries that implement a wide variety of mathematical operations. This leads to a
number of dependencies that FeenoX needs in order to implement certain features.

There is only one dependency that ismandatory, namelyGNUGSL (see sec. 2.1.1), which if it not found then
FeenoX cannot be compiled. All other dependencies are optional, meaning that FeenoX can be compiled
but its capabilities will be partially reduced.

As per the SRS, all dependencies have to be available on mainstream GNU/Linux distributions and have
to be free and open source software. But they can also be compiled from source in case the package
repositories are not available or customized compilation flags are needed (i.e. optimization or debugging
settings).

In particular, PETSc (and SLEPc) also depend on other mathematical libraries to perform particular oper-
ations such as low-level linear algebra operations. These extra dependencies can be either free (such as
LAPACK) or non-free (such as Intel’s MKL), but there is always at least one combination of a working
setup that involves only free and open source software which is compatible with FeenoX licensing terms
(GPLv3+). See the documentation of each package for licensing details.

2.1 Mandatory dependencies

FeenoX has one mandatory dependency for run-time execution and the standard build toolchain for com-
pilation. It is written in C99 so only a C compiler is needed, although make is also required. Free and open
source compilers are favored. The usual C compiler is gcc but clang or Intel’s icc and the newer icx can also
be used.

Note that there is no need to have a Fortran nor a C++ compiler to build FeenoX. They might be needed
to build other dependencies (such as PETSc and its dependencies), but not to compile FeenoX if all the
dependencies are installed from the oeprating system’s package repositories. In case the build toolchain
is not already installed, do so with

2024-06-14 / / f2fcb09+dirty 3/16

https://www.debian.org/
SDS.md
https://www.gnu.org/software/gsl/
SRS.md
https://petsc.org/release/
https://slepc.upv.es/
http://www.netlib.org/lapack/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html

Compilation instructions

sudo apt-get install gcc make

If the source is to be fetched from the Git repository then not only is git needed but also autoconf and
automake since the configure script is not stored in the Git repository but the autogen.sh script that bootstraps
the tree and creates it. So if instead of compiling a source tarball one wants to clone from GitHub, these
packages are also mandatory:

sudo apt-get install git automake autoconf

Again, chances are that any existing GNU/Linux box has all these tools already installed.

2.1.1 The GNU Scientific Library

The only run-time dependency is GNU GSL (not to be confused with Microsoft GSL). It can be installed
with

sudo apt-get install libgsl-dev

In case this package is not available or you do not have enough permissions to install system-wide packages,
there are two options.

1. Pass the option --enable-download-gsl to the configure script below.
2. Manually download, compile and install GNU GSL

If the configure script cannot find both the headers and the actual library, it will refuse to proceed. Note
that the FeenoX binaries already contain a static version of the GSL so it is not needed to have it installed
in order to run the statically-linked binaries.

2.2 Optional dependencies

FeenoX has three optional run-time dependencies. It can be compiled without any of these, but function-
ality will be reduced:

• SUNDIALS provides support for solving systems of ordinary differential equations (ODEs) or
differential-algebraic equations (DAEs). This dependency is needed when running inputs with the
PHASE_SPACE keyword.

• PETSc provides support for solving partial differential equations (PDEs). This dependency is needed
when running inputs with the PROBLEM keyword.

• SLEPc provides support for solving eigen-value problems in partial differential equations (PDEs).
This dependency is needed for inputs with PROBLEM types with eigen-value formulations such as
modal and neutron_sn.

In absence of all these, FeenoX can still be used to

• solve general mathematical problems such as the ones to compute the Fibonacci sequence or the
Logistic map,

• operate on functions, either algebraically or point-wise interpolated such as Computing the deriva-
tive of a function as a Unix filter

• read, operate over and write meshes,

2024-06-14 / / f2fcb09+dirty 4/16

https://github.com/seamplex/feenox/
https://www.gnu.org/software/gsl/
https://github.com/microsoft/GSL
https://www.gnu.org/software/gsl/
https://computing.llnl.gov/projects/sundials
https://petsc.org/
https://slepc.upv.es/
https://www.seamplex.com/feenox/examples/#the-fibonacci-sequence
https://www.seamplex.com/feenox/examples/#the-logistic-map
https://www.seamplex.com/feenox/examples/#computing-the-derivative-of-a-function-as-a-unix-filter
https://www.seamplex.com/feenox/examples/#computing-the-derivative-of-a-function-as-a-unix-filter

Compilation instructions

• etc.

These optional dependencies have to be installed separately. There is no option to have configure to down-
load them as with --enable-download-gsl. When running the test suite (sec. 2.6), those tests that need an
optional dependency which was not found at compile time will be skipped.

2.2.1 SUNDIALS

SUNDIALS is a SUite of Nonlinear and DIfferential/ALgebraic equation Solvers. It is used by FeenoX to
solve dynamical systems casted as DAEs with the keyword PHASE_SPACE, like the Lorenz system.

Install either by doing

sudo apt-get install libsundials-dev

or by following the instructions in the documentation.

2.2.2 PETSc

The Portable, Extensible Toolkit for Scientific Computation, pronounced PET-see (/ˈpɛt-siː/), is a suite of
data structures and routines for the scalable (parallel) solution of scientific applications modeled by partial
differential equations. It is used by FeenoX to solve PDEs with the keyword PROBLEM, like the NAFEMS LE10
benchmark problem.

Install either by doing

sudo apt-get install petsc-dev

or by following the instructions in the documentation.

Note that

• Configuring and compiling PETSc from scratch might be difficult the first time. It has a lot of depen-
dencies and options. Read the official documentation for a detailed explanation.

• There is a huge difference in efficiency between using PETSc compiled with debugging symbols and
with optimization flags. Make sure to configure --with-debugging=0 for FeenoX production runs and
leave the debugging symbols (which is the default) for development and debugging only.

• FeenoX needs PETSc to be configured with real double-precision scalars. It will compile but will
complain at run-time when using complex and/or single or quad-precision scalars.

• FeenoX honors the PETSC_DIR and PETSC_ARCH environment variables when executing configure. If these
two do not exist or are empty, it will try to use the default system-wide locations (i.e. the petsc-dev

package).

2.2.3 SLEPc

The Scalable Library for Eigenvalue Problem Computations, is a software library for the solution of large
scale sparse eigenvalue problems on parallel computers. It is used by FeenoX to solve PDEs with the
keyword PROBLEM that need eigen-value computations, such as modal analysis of a cantilevered beam.

Install either by doing

sudo apt-get install slepc-dev

2024-06-14 / / f2fcb09+dirty 5/16

https://computing.llnl.gov/projects/sundials
https://www.seamplex.com/feenox/doc/feenox-manual.html#phase_space
https://www.seamplex.com/feenox/examples/#lorenz-attractor-the-one-with-the-butterfly
(https://petsc.org/)
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem
https://www.seamplex.com/feenox/examples/#nafems-le10-thick-plate-pressure-benchmark
https://www.seamplex.com/feenox/examples/#nafems-le10-thick-plate-pressure-benchmark
https://petsc.org/release/install/
https://slepc.upv.es/
https://www.seamplex.com/feenox/doc/feenox-manual.html#problem
https://www.seamplex.com/feenox/examples/#five-natural-modes-of-a-cantilevered-wire

Compilation instructions

or by following the instructions in the documentation.

Note that

• SLEPc is an extension of PETSc so the latter has to be already installed and configured.
• FeenoX honors the SLEPC_DIR environment variable when executing configure. If it does not exist or
is empty it will try to use the default system-wide locations (i.e. the slepc-dev package).

• If PETSc was configured with --download-slepc then the SLEPC_DIR variable has to be set to the directory
inside PETSC_DIR where SLEPc was cloned and compiled.

2.3 FeenoX source code

There are two ways of getting FeenoX’s source code:

1. Cloning the GitHub repository at https://github.com/seamplex/feenox
2. Downloading a source tarball from https://seamplex.com/feenox/dist/src/

2.3.1 Git repository

The main Git repository is hosted on GitHub at https://github.com/seamplex/feenox. It is public so it
can be cloned either through HTTPS or SSH without needing any particular credentials. It can also be
forked freely. See the Programming Guide for details about pull requests and/or write access to the main
repository.

Ideally, the main branch should have a usable snapshot. All other branches can contain code that might not
compile or might not run or might not be tested. If you find a commit in the main branch that does not
pass the tests, please report it in the issue tracker ASAP.

After cloning the repository

git clone https://github.com/seamplex/feenox

the autogen.sh script has to be called to bootstrap the working tree, since the configure script is not stored
in the repository but created from configure.ac (which is in the repository) by autogen.sh.

Similarly, after updating the working tree with

git pull

it is recommended to re-run the autogen.sh script. It will do a make clean and re-compute the version string.

2.3.2 Source tarballs

When downloading a source tarball, there is no need to run autogen.sh since the configure script is already
included in the tarball. This method cannot update the working tree. For each new FeenoX release, the
whole source tarball has to be downloaded again.

2.4 Configuration

To create a proper Makefile for the particular architecture, dependencies and compilation options, the script
configure has to be executed. This procedure follows the GNU Coding Standards.

./configure

2024-06-14 / / f2fcb09+dirty 6/16

https://github.com/seamplex/feenox
https://seamplex.com/feenox/dist/src/
https://github.com/seamplex/feenox
programming.md
https://www.gnu.org/prep/standards/

Compilation instructions

Without any particular options, configure will check if the mandatory GNU Scientific Library is available
(both its headers and run-time library). If it is not, then the option --enable-download-gsl can be used. This
option will try to use wget (which should be installed) to download a source tarball, uncompress, configure
and compile it. If these steps are successful, this GSL will be statically linked into the resulting FeenoX
executable. If there is no internet connection, the configure script will say that the download failed. In that
case, get the indicated tarball file manually, copy it into the current directory and re-run ./configure.

The script will also check for the availability of optional dependencies. At the end of the execution, a
summary of what was found (or not) is printed in the standard output:

$./configure
[...]

Summary of dependencies

GNU Scientific Library from system
SUNDIALS IDA yes
PETSc yes /usr/lib/petsc
SLEPc no

[...]

If for some reason one of the optional dependencies is available but FeenoX should not use it, then pass
--without-sundials, --without-petsc and/or --without-slepc as arguments. For example

$./configure --without-sundials --without-petsc
[...]

Summary of dependencies

GNU Scientific Library from system
SUNDIALS no
PETSc no
SLEPc no

[...]

If configure complains about contradicting values from the cached ones, run autogen.sh again before
configure and/or clone/uncompress the source tarball in a fresh location.

To see all the available options run

./configure --help

2.5 Source code compilation

After the successful execution of configure, a Makefile is created. To compile FeenoX, just execute

make

Compilation should take a dozen of seconds. It can be even sped up by using the -j option

make -j8

The binary executable will be located in the src directory but a copy will be made in the base directory as
well. Test it by running without any arguments

2024-06-14 / / f2fcb09+dirty 7/16

https://www.gnu.org/software/gsl/

Compilation instructions

$./feenox
FeenoX v0.2.14-gbbf48c9
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

usage: feenox [options] inputfile [replacement arguments] [petsc options]

-h, --help display options and detailed explanations of commmand-line usage
-v, --version display brief version information and exit
-V, --versions display detailed version information

Run with --help for further explanations.
$

The -v (or --version) option shows the version and a copyright notice:

$./feenox -v
FeenoX v0.2.14-gbbf48c9
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Copyright © 2009--2022 Seamplex, https://seamplex.com/feenox
GNU General Public License v3+, https://www.gnu.org/licenses/gpl.html.
FeenoX is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
$

The -V (or --versions) option shows the dates of the last commits, the compiler options and the versions of
the linked libraries:

$./feenox -V
FeenoX v0.1.24-g6cfe063
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Last commit date : Sun Aug 29 11:34:04 2021 -0300
Build date : Sun Aug 29 11:44:50 2021 -0300
Build architecture : linux-gnu x86_64
Compiler version : gcc (Debian 10.2.1-6) 10.2.1 20210110
Compiler expansion : gcc -Wl,-z,relro -I/usr/include/x86_64-linux-gnu/mpich -L/usr/lib/x86_64-linux-gnu ←↩

-lmpich
Compiler flags : -O3
Builder : gtheler@chalmers
GSL version : 2.6
SUNDIALS version : 4.1.0
PETSc version : Petsc Release Version 3.14.5, Mar 03, 2021
PETSc arch :
PETSc options : --build=x86_64-linux-gnu --prefix=/usr --includedir=${prefix}/include --mandir=${ ←↩

prefix}/share/man --infodir=${prefix}/share/info --sysconfdir=/etc --localstatedir=/var --with- ←↩
option-checking=0 --with-silent-rules=0 --libdir=${prefix}/lib/x86_64-linux-gnu --runstatedir=/run ←↩
--with-maintainer-mode=0 --with-dependency-tracking=0 --with-debugging=0 --shared-library-extension ←↩
=_real --with-shared-libraries --with-pic=1 --with-cc=mpicc --with-cxx=mpicxx --with-fc=mpif90 -- ←↩
with-cxx-dialect=C++11 --with-opencl=1 --with-blas-lib=-lblas --with-lapack-lib=-llapack --with- ←↩
scalapack=1 --with-scalapack-lib=-lscalapack-openmpi --with-ptscotch=1 --with-ptscotch-include=/usr ←↩
/include/scotch --with-ptscotch-lib="-lptesmumps -lptscotch -lptscotcherr" --with-fftw=1 --with- ←↩
fftw-include="[]" --with-fftw-lib="-lfftw3 -lfftw3_mpi" --with-superlu_dist=1 --with-superlu_dist- ←↩
include=/usr/include/superlu-dist --with-superlu_dist-lib=-lsuperlu_dist --with-hdf5-include=/usr/ ←↩
include/hdf5/openmpi --with-hdf5-lib="-L/usr/lib/x86_64-linux-gnu/hdf5/openmpi -L/usr/lib/x86_64- ←↩
linux-gnu/openmpi/lib -lhdf5 -lmpi" --CXX_LINKER_FLAGS=-Wl,--no-as-needed --with-hypre=1 --with- ←↩

2024-06-14 / / f2fcb09+dirty 8/16

Compilation instructions

hypre-include=/usr/include/hypre --with-hypre-lib=-lHYPRE_core --with-mumps=1 --with-mumps-include ←↩
="[]" --with-mumps-lib="-ldmumps -lzmumps -lsmumps -lcmumps -lmumps_common -lpord" --with- ←↩
suitesparse=1 --with-suitesparse-include=/usr/include/suitesparse --with-suitesparse-lib="-lumfpack ←↩
-lamd -lcholmod -lklu" --with-superlu=1 --with-superlu-include=/usr/include/superlu --with-superlu ←↩
-lib=-lsuperlu --prefix=/usr/lib/petscdir/petsc3.14/x86_64-linux-gnu-real --PETSC_ARCH=x86_64-linux ←↩
-gnu-real CFLAGS="-g -O2 -ffile-prefix-map=/build/petsc-pVufYp/petsc-3.14.5+dfsg1=. -flto=auto - ←↩
ffat-lto-objects -fstack-protector-strong -Wformat -Werror=format-security -fPIC" CXXFLAGS="-g -O2 ←↩
-ffile-prefix-map=/build/petsc-pVufYp/petsc-3.14.5+dfsg1=. -flto=auto -ffat-lto-objects -fstack- ←↩
protector-strong -Wformat -Werror=format-security -fPIC" FCFLAGS="-g -O2 -ffile-prefix-map=/build/ ←↩
petsc-pVufYp/petsc-3.14.5+dfsg1=. -flto=auto -ffat-lto-objects -fstack-protector-strong -fPIC - ←↩
ffree-line-length-0" FFLAGS="-g -O2 -ffile-prefix-map=/build/petsc-pVufYp/petsc-3.14.5+dfsg1=. - ←↩
flto=auto -ffat-lto-objects -fstack-protector-strong -fPIC -ffree-line-length-0" CPPFLAGS="-Wdate- ←↩
time -D_FORTIFY_SOURCE=2" LDFLAGS="-Wl,-Bsymbolic-functions -flto=auto -Wl,-z,relro -fPIC" ←↩
MAKEFLAGS=w

SLEPc version : SLEPc Release Version 3.14.2, Feb 01, 2021
$

2.6 Test suite

The test directory contains a set of test cases whose output is known so that unintended regressions can
be detected quickly (see the programming guide for more information). The test suite ought to be run after
each modification in FeenoX’s source code. It consists of a set of scripts and input files needed to solve
dozens of cases. The output of each execution is compared to a reference solution. In case the output does
not match the reference, the test suite fails.

After compiling FeenoX as explained in sec. 2.5, the test suite can be run with make check. Ideally everything
should be green meaning the tests passed:

$ make check
Making check in src
make[1]: Entering directory '/home/gtheler/codigos/feenox/src'
make[1]: Nothing to be done for 'check'.
make[1]: Leaving directory '/home/gtheler/codigos/feenox/src'
make[1]: Entering directory '/home/gtheler/codigos/feenox'
cp -r src/feenox .
make check-TESTS
make[2]: Entering directory '/home/gtheler/codigos/feenox'
make[3]: Entering directory '/home/gtheler/codigos/feenox'
XFAIL: tests/abort.sh
PASS: tests/algebraic_expr.sh
PASS: tests/beam-modal.sh
PASS: tests/beam-ortho.sh
PASS: tests/builtin.sh
PASS: tests/cylinder-traction-force.sh
PASS: tests/default_argument_value.sh
PASS: tests/expressions_constants.sh
PASS: tests/expressions_variables.sh
PASS: tests/expressions_functions.sh
PASS: tests/exp.sh
PASS: tests/i-beam-euler-bernoulli.sh
PASS: tests/iaea-pwr.sh
PASS: tests/iterative.sh
PASS: tests/fit.sh
PASS: tests/function_algebraic.sh
PASS: tests/function_data.sh
PASS: tests/function_file.sh

2024-06-14 / / f2fcb09+dirty 9/16

https://github.com/seamplex/feenox/tree/main/tests
programming.md

Compilation instructions

PASS: tests/function_vectors.sh
PASS: tests/integral.sh
PASS: tests/laplace2d.sh
PASS: tests/materials.sh
PASS: tests/mesh.sh
PASS: tests/moment-of-inertia.sh
PASS: tests/nafems-le1.sh
PASS: tests/nafems-le10.sh
PASS: tests/nafems-le11.sh
PASS: tests/nafems-t1-4.sh
PASS: tests/nafems-t2-3.sh
PASS: tests/neutron_diffusion_src.sh
PASS: tests/neutron_diffusion_keff.sh
PASS: tests/parallelepiped.sh
PASS: tests/point-kinetics.sh
PASS: tests/print.sh
PASS: tests/thermal-1d.sh
PASS: tests/thermal-2d.sh
PASS: tests/trig.sh
PASS: tests/two-cubes-isotropic.sh
PASS: tests/two-cubes-orthotropic.sh
PASS: tests/vector.sh
XFAIL: tests/xfail-few-properties-ortho-young.sh
XFAIL: tests/xfail-few-properties-ortho-poisson.sh
XFAIL: tests/xfail-few-properties-ortho-shear.sh
==
Testsuite summary for feenox v0.2.6-g3237ce9
==
TOTAL: 43
PASS: 39
SKIP: 0
XFAIL: 4
FAIL: 0
XPASS: 0
ERROR: 0
==
make[3]: Leaving directory '/home/gtheler/codigos/feenox'
make[2]: Leaving directory '/home/gtheler/codigos/feenox'
make[1]: Leaving directory '/home/gtheler/codigos/feenox'
$

The XFAIL result means that those cases are expected to fail (they are there to test if FeenoX can handle
errors). Failure would mean they passed. In case FeenoX was not compiled with any optional dependency,
the corresponding tests will be skipped. Skipped tests do not mean any failure, but that the compiled
FeenoX executable does not have the full capabilities. For example, when configuring with ./configure ←↩

--without-petsc (but with SUNDIALS), the test suite output should be a mixture of green and blue:

$./configure --without-petsc
[...]
configure: creating ./src/version.h

Summary of dependencies

GNU Scientific Library from system
SUNDIALS yes
PETSc no
SLEPc no

2024-06-14 / / f2fcb09+dirty 10/16

Compilation instructions

Compiler gcc
checking that generated files are newer than configure... done
configure: creating ./config.status
config.status: creating Makefile
config.status: creating src/Makefile
config.status: creating doc/Makefile
config.status: executing depfiles commands
$ make
[...]
$ make check
Making check in src
make[1]: Entering directory '/home/gtheler/codigos/feenox/src'
make[1]: Nothing to be done for 'check'.
make[1]: Leaving directory '/home/gtheler/codigos/feenox/src'
make[1]: Entering directory '/home/gtheler/codigos/feenox'
cp -r src/feenox .
make check-TESTS
make[2]: Entering directory '/home/gtheler/codigos/feenox'
make[3]: Entering directory '/home/gtheler/codigos/feenox'
XFAIL: tests/abort.sh
PASS: tests/algebraic_expr.sh
SKIP: tests/beam-modal.sh
SKIP: tests/beam-ortho.sh
PASS: tests/builtin.sh
SKIP: tests/cylinder-traction-force.sh
PASS: tests/default_argument_value.sh
PASS: tests/expressions_constants.sh
PASS: tests/expressions_variables.sh
PASS: tests/expressions_functions.sh
PASS: tests/exp.sh
SKIP: tests/i-beam-euler-bernoulli.sh
SKIP: tests/iaea-pwr.sh
PASS: tests/iterative.sh
PASS: tests/fit.sh
PASS: tests/function_algebraic.sh
PASS: tests/function_data.sh
PASS: tests/function_file.sh
PASS: tests/function_vectors.sh
PASS: tests/integral.sh
SKIP: tests/laplace2d.sh
PASS: tests/materials.sh
PASS: tests/mesh.sh
PASS: tests/moment-of-inertia.sh
SKIP: tests/nafems-le1.sh
SKIP: tests/nafems-le10.sh
SKIP: tests/nafems-le11.sh
SKIP: tests/nafems-t1-4.sh
SKIP: tests/nafems-t2-3.sh
SKIP: tests/neutron_diffusion_src.sh
SKIP: tests/neutron_diffusion_keff.sh
SKIP: tests/parallelepiped.sh
PASS: tests/point-kinetics.sh
PASS: tests/print.sh
SKIP: tests/thermal-1d.sh
SKIP: tests/thermal-2d.sh
PASS: tests/trig.sh
SKIP: tests/two-cubes-isotropic.sh
SKIP: tests/two-cubes-orthotropic.sh

2024-06-14 / / f2fcb09+dirty 11/16

Compilation instructions

PASS: tests/vector.sh
SKIP: tests/xfail-few-properties-ortho-young.sh
SKIP: tests/xfail-few-properties-ortho-poisson.sh
SKIP: tests/xfail-few-properties-ortho-shear.sh
==
Testsuite summary for feenox v0.2.6-g3237ce9
==
TOTAL: 43
PASS: 21
SKIP: 21
XFAIL: 1
FAIL: 0
XPASS: 0
ERROR: 0
==
make[3]: Leaving directory '/home/gtheler/codigos/feenox'
make[2]: Leaving directory '/home/gtheler/codigos/feenox'
make[1]: Leaving directory '/home/gtheler/codigos/feenox'
$

To illustrate how regressions can be detected, let us add a bug deliberately and re-run the test suite.

Edit the source file that contains the shape functions of the second-order tetrahedra src/mesh/tet10.c, find
the function feenox_mesh_tet10_h() and randomly change a sign, i.e. replace

return t*(2*t-1);

with
return t*(2*t+1);

Save, recompile, and re-run the test suite to obtain some red:

$ git diff src/mesh/
diff --git a/src/mesh/tet10.c b/src/mesh/tet10.c
index 72bc838..293c290 100644
--- a/src/mesh/tet10.c
+++ b/src/mesh/tet10.c
@@ -227,7 +227,7 @@ double feenox_mesh_tet10_h(int j, double *vec_r) {

return s*(2*s-1);
break;

case 3:
- return t*(2*t-1);
+ return t*(2*t+1);

break;

case 4:
$ make
[...]
$ make check
Making check in src
make[1]: Entering directory '/home/gtheler/codigos/feenox/src'
make[1]: Nothing to be done for 'check'.
make[1]: Leaving directory '/home/gtheler/codigos/feenox/src'
make[1]: Entering directory '/home/gtheler/codigos/feenox'
cp -r src/feenox .
make check-TESTS

2024-06-14 / / f2fcb09+dirty 12/16

Compilation instructions

make[2]: Entering directory '/home/gtheler/codigos/feenox'
make[3]: Entering directory '/home/gtheler/codigos/feenox'
XFAIL: tests/abort.sh
PASS: tests/algebraic_expr.sh
FAIL: tests/beam-modal.sh
PASS: tests/beam-ortho.sh
PASS: tests/builtin.sh
PASS: tests/cylinder-traction-force.sh
PASS: tests/default_argument_value.sh
PASS: tests/expressions_constants.sh
PASS: tests/expressions_variables.sh
PASS: tests/expressions_functions.sh
PASS: tests/exp.sh
PASS: tests/i-beam-euler-bernoulli.sh
PASS: tests/iaea-pwr.sh
PASS: tests/iterative.sh
PASS: tests/fit.sh
PASS: tests/function_algebraic.sh
PASS: tests/function_data.sh
PASS: tests/function_file.sh
PASS: tests/function_vectors.sh
PASS: tests/integral.sh
PASS: tests/laplace2d.sh
PASS: tests/materials.sh
PASS: tests/mesh.sh
PASS: tests/moment-of-inertia.sh
PASS: tests/nafems-le1.sh
FAIL: tests/nafems-le10.sh
FAIL: tests/nafems-le11.sh
PASS: tests/nafems-t1-4.sh
PASS: tests/nafems-t2-3.sh
PASS: tests/neutron_diffusion_src.sh
PASS: tests/neutron_diffusion_keff.sh
FAIL: tests/parallelepiped.sh
PASS: tests/point-kinetics.sh
PASS: tests/print.sh
PASS: tests/thermal-1d.sh
PASS: tests/thermal-2d.sh
PASS: tests/trig.sh
PASS: tests/two-cubes-isotropic.sh
PASS: tests/two-cubes-orthotropic.sh
PASS: tests/vector.sh
XFAIL: tests/xfail-few-properties-ortho-young.sh
XFAIL: tests/xfail-few-properties-ortho-poisson.sh
XFAIL: tests/xfail-few-properties-ortho-shear.sh
==
Testsuite summary for feenox v0.2.6-g3237ce9
==
TOTAL: 43
PASS: 35
SKIP: 0
XFAIL: 4
FAIL: 4
XPASS: 0
ERROR: 0
==
See ./test-suite.log
Please report to jeremy@seamplex.com

2024-06-14 / / f2fcb09+dirty 13/16

Compilation instructions

==
make[3]: *** [Makefile:1152: test-suite.log] Error 1
make[3]: Leaving directory '/home/gtheler/codigos/feenox'
make[2]: *** [Makefile:1260: check-TESTS] Error 2
make[2]: Leaving directory '/home/gtheler/codigos/feenox'
make[1]: *** [Makefile:1791: check-am] Error 2
make[1]: Leaving directory '/home/gtheler/codigos/feenox'
make: *** [Makefile:1037: check-recursive] Error 1
$

2.7 Installation

To be able to execute FeenoX from any directory, the binary has to be copied to a directory available in the
PATH environment variable. If you have root access, the easiest and cleanest way of doing this is by calling
make install with sudo or su:

$ sudo make install
Making install in src
make[1]: Entering directory '/home/gtheler/codigos/feenox/src'
gmake[2]: Entering directory '/home/gtheler/codigos/feenox/src'
/usr/bin/mkdir -p '/usr/local/bin'
/usr/bin/install -c feenox '/usr/local/bin'

gmake[2]: Nothing to be done for 'install-data-am'.
gmake[2]: Leaving directory '/home/gtheler/codigos/feenox/src'
make[1]: Leaving directory '/home/gtheler/codigos/feenox/src'
make[1]: Entering directory '/home/gtheler/codigos/feenox'
cp -r src/feenox .
make[2]: Entering directory '/home/gtheler/codigos/feenox'
make[2]: Nothing to be done for 'install-exec-am'.
make[2]: Nothing to be done for 'install-data-am'.
make[2]: Leaving directory '/home/gtheler/codigos/feenox'
make[1]: Leaving directory '/home/gtheler/codigos/feenox'
$

If you do not have root access or do not want to populate /usr/local/bin, you can either

• Configure with a different prefix (not covered here), or

• Copy (or symlink) the feenox executable to $HOME/bin:

mkdir -p ${HOME}/bin
cp feenox ${HOME}/bin

If you plan to regularly update FeenoX (which you should), you might want to symlink instead of
copy so you do not need to update the binary in $HOME/bin each time you recompile:

mkdir -p ${HOME}/bin
ln -sf feenox ${HOME}/bin

Check that FeenoX is now available from any directory (note the command is feenox and not ./feenox):

$ cd
$ feenox -v
FeenoX v0.2.14-gbbf48c9
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

2024-06-14 / / f2fcb09+dirty 14/16

Compilation instructions

Copyright © 2009--2022 Seamplex, https://seamplex.com/feenox
GNU General Public License v3+, https://www.gnu.org/licenses/gpl.html.
FeenoX is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
$

If it is not and you went through the $HOME/bin path, make sure it is in the PATH (pun). Add
export PATH=${PATH}:${HOME}/bin

to your .bashrc in your home directory and re-login.

3 Advanced settings

3.1 Compiling with debug symbols

By default the C flags are -O3, without debugging. To add the -g flag, just use CFLAGS when configuring:

./configure CFLAGS="-g -O0"

3.2 Using a different compiler

FeenoX uses the CC environment variable to set the compiler. So configure like

export CC=clang; ./configure

Note that the CC variable has to be exported and not passed to configure. That is to say, don’t configure like

./configure CC=clang

Mind also the following environment variables when using MPI-enabled PETSc:

• MPICH_CC

• OMPI_CC

• I_MPI_CC

Depending on how your system is configured, this last command might show clang but not actually use
it. The FeenoX executable will show the configured compiler and flags when invoked with the --versions

option:

$ feenox --versions
FeenoX v0.2.14-gbbf48c9
a free no-fee no-X uniX-like finite-element(ish) computational engineering tool

Last commit date : Sat Feb 12 15:35:05 2022 -0300
Build date : Sat Feb 12 15:35:44 2022 -0300
Build architecture : linux-gnu x86_64
Compiler version : gcc (Debian 10.2.1-6) 10.2.1 20210110
Compiler expansion : gcc -Wl,-z,relro -I/usr/include/x86_64-linux-gnu/mpich -L/usr/lib/x86_64-linux-gnu ←↩

-lmpich
Compiler flags : -O3
Builder : gtheler@tom

2024-06-14 / / f2fcb09+dirty 15/16

Compilation instructions

GSL version : 2.6
SUNDIALS version : 5.7.0
PETSc version : Petsc Release Version 3.16.3, Jan 05, 2022
PETSc arch : arch-linux-c-debug
PETSc options : --download-eigen --download-hdf5 --download-hypre --download-metis --download-mumps ←↩

--download-parmetis --download-pragmatic --download-scalapack
SLEPc version : SLEPc Release Version 3.16.1, Nov 17, 2021
$

You can check which compiler was actually used by analyzing the feenox binary as

$ objdump -s --section .comment ./feenox

./feenox: file format elf64-x86-64

Contents of section .comment:
0000 4743433a 20284465 6269616e 2031322e GCC: (Debian 12.
0010 322e302d 31342920 31322e32 2e300044 2.0-14) 12.2.0.D
0020 65626961 6e20636c 616e6720 76657273 ebian clang vers
0030 696f6e20 31342e30 2e3600 ion 14.0.6.
$

It should be noted that the MPI implementation used to compile FeenoX has to match the one used to
compile PETSc. Therefore, if you compiled PETSc on your own, it is up to you to ensure MPI compatibility.
If you are using PETSc as provided by your distribution’s repositories, you will have to find out which one
was used (it is usually OpenMPI) and use the same one when compiling FeenoX. FeenoX has been tested
using PETSc compiled with

• MPICH
• OpenMPI
• Intel MPI

3.3 Compiling PETSc

Particular explanation for FeenoX is to be done. For now, follow the general explanation from PETSc’s
website.

export PETSC_DIR=$PWD
export PETSC_ARCH=arch-linux-c-opt
./configure --with-debugging=0 --download-mumps --download-scalapack --with-cxx=0 --COPTFLAGS=-O3 -- ←↩

FOPTFLAGS=-O3

export PETSC_DIR=$PWD
./configure --with-debugging=0 --with-openmp=0 --with-x=0 --with-cxx=0 --COPTFLAGS=-O3 --FOPTFLAGS=-O3
make PETSC_DIR=/home/ubuntu/reflex-deps/petsc-3.17.2 PETSC_ARCH=arch-linux-c-opt all

2024-06-14 / / f2fcb09+dirty 16/16

https://petsc.org/release/install/
https://petsc.org/release/install/

	Quickstart
	Detailed configuration and compilation
	Mandatory dependencies
	The GNU Scientific Library

	Optional dependencies
	SUNDIALS
	PETSc
	SLEPc

	FeenoX source code
	Git repository
	Source tarballs

	Configuration
	Source code compilation
	Test suite
	Installation

	Advanced settings
	Compiling with debug symbols
	Using a different compiler
	Compiling PETSc

