
Th
is

 d
o

cu
m

en
t 

is
 li

ce
n

se
d

 u
n

d
er

 t
h

e 
C

re
a�

ve
 C

o
m

m
o

n
s

A
tr

ri
b

u
�

o
n

-S
h

ar
eA

lik
e 

4
.0

  I
n

te
rn

a�
o

n
al

 L
ic

en
se

.

Engineering made simple. But not simpler.
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1 Introduction
Fifty years ago, J. Veeder from AECL (now CANDU Inc.) tackled a problem that is still important even nowadays:
that of the thermal expansion of uranium pellets within nuclear reactor fuel element bundles [1]. Leaving aside the
neutronic and thermalhydraulic-related issues, the original problem proposed by Veeder poses an interesting case
worth of study in order to analyze how numerical computer codes cope with thermo-elastic expansion. In particular,
this report shows how this problem can be solved with the free (“Free” both as in “free speech” and in “free beer.”)
and open source finite-element analysis tool fino—developed by Seamplex—with a Gmsh-generated unstructured
grid. More information about the programs, including documentation and downloads can be found at

(a) https://www.seamplex.com/fino (b) http://gmsh.info/

In particular, this report

• describes again the original problem, including the boundary conditions,

• shows how a proper geometry and grid can be built using Gmsh,

• solves the problem for a particular set of input parameters (geometry & grid coarseness) using fino,

• performs a parametric analysis to show the convergence with respect to the mesh size for both first and
second-order elements, and

• discusses both the results and the methodology.

Our main objective is closer to illustrating the features that the finite-element back-end fino can provide—for
example to web-based front-ends like CAEplex¹—than to merely benchmark a numerical solution against a fifty-
year-old second-order polynomial of two variables. It should be noted that, following Seamplex’ principles,² only
free and open source software was used in preparing this report.

2 Problem
We can see the geometry of the problem to be solved in figure 1, which is the actual original drawing published
by Veeder. It consists of finding the displacement fields n the x, y and z directions—namely u(x, y, z), v(x, y, z)
andw(x, y, z)—in a cylinder of radius b and height 2h centered at the origin of an x-y-z systemwith the cylinder axis
along the z direction but otherwise free to expand in any direction, subject to a non-uniform temperature distribution.
The original problem is stated in cylindrical coordinates. Without loosing generality, we take our positive x axis as
coincident with the original r direction. Moreover, given that the problem is symmetric with respect to the x-y plane
we focus only on the z > 0 half-space (figure 1b).

The cylinder is subject to a temperature distribution that varies radially on space as

T (r, z) = T0 ·
[
1−

(r
b

)2
]

T (x, y, z) = T0 ·
[
1−

(
x2 + y2

b2

)]

¹https://www.caeplex.com
²https://www.seamplex.com/principles.html
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(a) Original figure from reference [1]. (b) Symmetry over the x-y plane (c) Temperature distribution

Figure 1: The problem to be solved: original geometry, x-y-z coordinates with symmetry and temperature distribuࢢons.

which is depicted in figure 1c, and all the surfaces are free to expand. The fact that this temperature distribution is
symmetric with respect to the x-y plane and that the cylinder is centered at the origin but otherwise free to expand
in any direction implies that the Dirichlet boundary conditions are

u(0, 0, 0) = 0 (1)
v(0, 0, 0) = 0 (2)
w(0, 0, 0) = 0 (3)
w(x, y, 0) = 0 (4)

i.e., the origin should be fixed and the base surface in the x-y plane should not have any displacement in the z
direction. The external faces should be subject to homogeneous Neumann boundary conditions.

It should be noted that these displacement boundary conditions are not enough to restrict all the rigid body
motions because rotations around the z axis can still occur. If displacement in the three directions was zero for the
base surface—effectively removing rotations—the obtained results would not be comparable to the original ones.
It is a feature of fino (actually of the PETSc library [2, 3] it is linked against) that it can obtain a solution even if
the problem is not well-defined in the classical way. Should we want to effectively avoid the cylinder from rotating
around the z axis, we may add the extra condition

v(0, y, 0) = 0 (5)

The Young modulus E is not needed, as the problem is homogeneous and depends linearly on this parameter.
The problem also asks just for the displacements only and not for the stresses, so any value of E that preserves the
stability of the numerical formulation may be used. The expansion coefficient α and the temperature increment T0

are used to nondimensionalize the reported results, so again any arbitrary values may be used. In the same sense,
the individual values of h and b are not important individually but as the ratio h/b. The Poisson ration ν, however,
appears as a non-linear parameter so its value is also needed.

3 Solution
The original reference [1] solves the problem for different values of the ratio h/b and the Poisson ratio ν. It uses a
power expansion of both ů and v̊ (the accent ◦ means “original”) in terms of the nondimensional radial and axial
positions ρ and ξ respectively. Given the number of equations involved (i.e. the boundary conditions and a functional
minimizing total strain energy) only the first six terms are retained:

ů(ρ, ξ) = b · ρ ·
[
a00 + a01 ·R(ρ) + a10 · Z(ξ) + a02 ·R(ρ)2 + a11 ·R(ρ) · Z(ξ) + a20 · Z(ξ)2

]
ẘ(ρ, ξ) = b · ξ ·

[
b00 + b01 ·R(ρ) + b10 · Z(ξ) + b02 ·R(ρ)2 + b11 ·R(ρ) · Z(ξ) + b20 · Z(ξ)2

]
c17ba70 5
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Figure 2: Illustraࢢon of the soluࢢon for h/b = 0.5 and ν = 0.333 obtained by fino by postprocessing the VTK file it generates with Paraview.

where R(ρ) = ρ2 − 1 and Z(ξ) = ξ2 − 1.
In particular, for h/b = 1/2 and ν = 1/3, the reported coefficients are

a00 = +0.66056

a01 = −0.44037

a10 = +0.23356

a02 = −0.06945

a11 = −0.10417

a20 = +0.00288

b00 = −0.01773

b01 = −0.46713

b10 = −0.04618

b02 = +0.10417

b11 = −0.01152

b20 = −0.00086

Figure 2 illustrates the solution obtained by fino using a finite-element approach over an unstructured grid, which
we describe in the following sections.

3.1 Geometry and mesh

As the problem geometry is a simple cylinder, we can both generate and mesh it with Gmsh. If the problem had had
a more complex geometry, a CAD tool would have been neded. In particular, we use the OpenCASCADE interface
Gmsh provides to create a cylinder of radius b and height h centered at the origin with its base on the x-y plane. We
have to add an explicit point at the origin so we can set boundary conditions (1), (2) and (3). If we wanted to avoid
rotations around the z axis we would add also a line from (0, 0, 0) to (0, b, 0) and associate boundary condition (5)
to it.

In order to be able to choose the cylinder radius and height on the one hand and the characteristic mesh length ℓc
on the other hand, instead of directly construction a Gmsh geometry script file (the usual .geo extension) we first
create an M4-macro template that fino can operate on and replace variables h, b and ℓc with algebraic expressions
so the complete set of problem parameters can be defined in the fino input file—potentially being read from the
command line arguments or be varied parametrically in a pre-defined way using the facilities provided by the wasora
framework [4] over which the fino tool is built. This M4 template is:

SetFactory("OpenCASCADE"); / / Gmsh >= 2.16.0 i s needed

Cylinder(1) = {0,0,0, 0,0,h, b}; / / create a cylinder of radius b and height h
Point(10) = {0, 0, 0, lc}; / / add a point at the origin
Point{10} In Surface {3}; / / and embed i t on the base

/ / physical ent i t ies ( these will be linked to boundary conditions in veeder . fin )
Physical Point("origin") = {10};
Physical Surface("base") = {3};

Physical Volume("bulk") = {1};

/ / these lines are needed to avoid the cylinder from rotating but Fino can handle this situation nevertheless
Line(4) = {10, 2};
Line{4} In Surface {3};

c17ba70 6
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Physical Line("extra_fix") = {4};

/ / mesh size settings
Mesh.CharacteristicLengthMin = 0.8*lc;
Mesh.CharacteristicLengthMax = 1.2*lc;
Mesh.CharacteristicLengthExtendFromBoundary = 0;

/ / mesh optimization settings
/ /Mesh. Lloyd = 1;
Mesh.HighOrderOptimize = 1;
Mesh.Optimize = 1;
Mesh.OptimizeNetgen = 1;

Lisࢢng 1: veeder.geo.m4

3.2 Thermo-elastic problem

Note that the file above cannot be directly passed to Gmsh as neither h nor b nor lc are defined. We use fino’s
(actually wasora’s) keyword M4 to define macros with these names containing the evaluated algebraic expressions
according to the variables with the same name:

# solves the benchmark problem by J . Veeder “Thermo−e last ic expansion of f in i te cylinders” , AECL−2660, 1967

# geometric parameters
b = 1 # cylinder radius
h = 0.5 # cylinder half−height
lc = h/3 # characteristic length of the mesh

# material properties (given as variables means that they are uniform over space )
E = 1 # young modulus (does not matter for the displacement )
nu = 0.333 # poisson ratio
alpha = 1/2 # temperature expansion coeff ic ient

# temperature distribution (given as algebraically−defined function of x , y and z)
T0 = 1
T(x,y,z) := T0*(1-(x^2+y^2)/(b^2))

# mesh
M4 { # create the geo f i l e from a template using the value of h, b & lc from above
INPUT_FILE_PATH veeder.geo.m4
OUTPUT_FILE_PATH veeder.geo
MACRO h h
MACRO b b
MACRO lc lc
}
SHELL "gmsh␣-3␣-v␣0␣-order␣2␣veeder.geo␣>␣/dev/null" # cal l gmsh (2nd order )
MESH FILE_PATH veeder.msh DIMENSIONS 3 # use the resulting mesh

# boundary conditions
PHYSICAL_ENTITY NAME base BC w=0 # no displacement in z
PHYSICAL_ENTITY NAME origin BC u=0 v=0 # fixed (because w is already 0)
# PHYSICAL_ENTITY NAME extra_fix BC v=0 # no displacement in y (without this the cylinder rotates around z)

# solve !
FINO_STEP

# non−dimensional displacement profi les
u~(xi) := u(b, 0, xi*h) / (b*alpha*T0)
w~(rho) := w(rho*b, 0, h) / (b*alpha*T0)

INCLUDE original.was # original solution as algebraic functions

# write the detailed profi les and the absolute error to a f i l e
PRINT_FUNCTION FILE_PATH profile.dat {

u~ u~o u~(xi)-u~o(xi)
w~ w~o w~(xi)-w~o(xi)

} MIN 0 MAX 1 NSTEPS 100 HEADER

# write vtk output
MESH_POST FILE_PATH veeder.vtk T VECTOR u v w

# screen output (only 10 values of displacements , text commented out so data can be plotted with gnuplot )
PRINT "\#␣======================================================================"
PRINT "\#␣h/b␣␣␣␣␣␣␣␣=␣" %.2f h/b
PRINT "\#␣nu␣␣␣␣␣␣␣␣␣=␣" %.2f nu
PRINT "\#␣elements␣␣␣=␣" %g elements
PRINT "\#␣nodes␣␣␣␣␣␣=␣" %g nodes
PRINT "\#␣----------------------------------------------------------------------"
PRINT "\#␣cpu␣time␣[sec]␣=␣" %.2f time_cpu_build "(build)␣" %.2f time_cpu_solve "(solve)" SEP "␣"
PRINT "\#␣memory␣[Gb]␣␣␣␣=␣" %.2f memory_usage_global/1e9 TEXT "/" available_memory/1e9 SEP "␣"
PRINT_FUNCTION FORMAT "%␣.3f" {

u~ u~(xi)-u~o(xi)
w~ w~(xi)-w~o(xi)

} MIN 0 MAX 1 NSTEPS 10 HEADER

Lisࢢng 2: veeder.fin

The original solution is computed in a separate file for clarity, which is a pure-wasora input file [4] and is included
form the main fino file:

c17ba70 7
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a00 = 0.66056
a01 = -0.44037
a10 = 0.23356
a02 = -0.06945
a11 = -0.10417
a20 = 0.00288
b00 = -0.01773
b01 = -0.46713
b10 = -0.04618
b02 = 0.10417
b11 = -0.01152
b20 = -0.00086

R(rho) := rho^2 - 1
Z(xi) := xi^2 - 1

uo(rho,xi) := rho * (a00 + a01*R(rho) + a10*Z(xi) + a02* R(rho)^2 + a11 * R(rho)*Z(xi) + a20 * Z(xi)^2)
wo(rho,xi) := xi * (b00 + b01*R(rho) + b10*Z(xi) + b02* R(rho)^2 + b11 * R(rho)*Z(xi) + b20 * Z(xi)^2)

u~o(xi) := uo(1,xi)
w~o(rho) := wo(rho,1)

Lisࢢng 3: original.was

The fino input file veeder.fin thus first generates the geometry and the mesh by filling out the M4 template
file veeder.geo.m4 generating veeder.geo, which is the input file script that Gmsh uses to then generate the mesh
file veeder.msh finally read back by fino with the MESH keyword. Once the problem is solved, the non-dimensional
displacements in x and in z are non-dimensionalized and evaluated along the axial and radial directions respectively

ũ(ξ) =
u(b, 0, ξ · h)

b · αT0

w̃(ρ) =
w(ρ · b, 0, h)

b · αT0

and then compared to the original six-term power-series results evaluated in the same directions

˚̃u(ξ) = ů(1, ξ)

˚̃w(ρ) = ẘ(ρ, 1)

computed algebraically in the file original.was.

Running fino v0.5.48-gfc1ad7b with veeder.fin as the main input file computes the desired results:

$ fino veeder.fin
# ======================================================================
# h/b = 0.50
# nu = 0.33
# elements = 1710
# nodes = 2687
# ----------------------------------------------------------------------
# cpu time [sec] = 0.09 (build) 1.16 (solve)
# memory [Gb] = 0.11 / 16.78
# xi u~ u~(xi)-u~o(xi) w~ w~(xi)-w~o(xi)
0.000 0.449 0.019 0.574 0.021
0.100 0.450 0.018 0.566 0.019
0.200 0.454 0.015 0.544 0.017
0.300 0.460 0.010 0.510 0.016
0.400 0.470 0.003 0.462 0.014
0.500 0.483 -0.004 0.401 0.010
0.600 0.500 -0.012 0.327 0.003
0.700 0.522 -0.021 0.244 -0.004
0.800 0.549 -0.028 0.155 -0.009
0.900 0.582 -0.034 0.063 -0.012
1.000 0.623 -0.038 -0.027 -0.009
$
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Figure 3: Radial non-dimensional displacement at the lateral surface of the cylinder (ρ = 1).
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Figure 4: Axial non-dimensional displacement at the upper surface of the cylinder (ξ = 1).
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Figures 3 and 4 show the one-dimensional profiles that the original reference [1] reports both numerically and
graphically, namely the radial non-dimensional displacement evaluated along the cylinder lateral surface ũ(ξ) and
the axial displacement along the cylinder upper surface w̃(ρ). It should be noted that the original solution was
computed using a six-term polynomial expansion subject to a strain energy minimization.That is to say, even though
it is a better approach to finite cylinder problems that assuming a circular geometry under either plane stress o plane
strain, we expected fino’s solution to be closer to the actual real solution than the one reported by Veeder fifty years
ago, that is more an illustrative reference rather than a solution benchmark.

3.3 Parametric study over grid size (and element order)

We can exploit the wasora’s framework design basis [5] to easily perform a parametric study with respect to the
grid characteristic length ℓc. We can use the PARAMETRIC keyword to vary one variable, say c in a specified range
in a pre-defined way, for example in linear steps or by following a quasi-random number sequence. Because the
geometry script file is generated from a M4 template, we can set Gmsh’s ℓc as a function of fino’s coarseness factor c.
Moreover, we can use the construction $1 to pass arguments in the fino command line as Gmsh’s arguments so we
can have the user to choose the order of the elements at runtime.

b = 1
h = 0.5

E = 1
nu = 0.333
alpha = 1/2

T0 = 1
T(x,y,z) := T0*(1-(x^2+y^2)/(b^2))

PARAMETRIC c MIN 2 MAX 24 STEP 1

OUTPUT_FILE geo veeder-$1-%.2f.geo c
M4 INPUT_FILE_PATH veeder.geo.m4 OUTPUT_FILE geo MACRO h h MACRO b b MACRO lc h*($1)/c
t0 = clock()
SHELL "gmsh␣-3␣-v␣0␣-order␣$1␣veeder-$1-%.2f.geo␣>␣/dev/null" c
t1 = clock()
INPUT_FILE mesh veeder-$1-%.2f.msh c
MESH FILE mesh DIMENSIONS 3

PHYSICAL_ENTITY NAME base BC w=0
PHYSICAL_ENTITY NAME origin BC u=0 v=0
PHYSICAL_ENTITY NAME extra_fix BC v=0

FINO_STEP

PRINT %.0f nodes elements %.2f c %.8f u(b,0,0)/(b*alpha*T0) w(0,0,h)/(b*alpha*T0) %.3f t1-t0 time_wall_build time_wall_solve %.2e ←↩
memory_usage_global

Lisࢢng 4: convergence.fin

$ fino convergence.fin 1 | tee convergence1.dat
165 593 2.00 0.46526524 0.48190672 0.157 0.007 0.024 2.17e+07
438 1710 3.00 0.46008672 0.54209584 0.313 0.021 0.049 3.03e+07
750 3112 4.00 0.45434478 0.55620820 0.357 0.040 0.093 3.64e+07
1277 5489 5.00 0.45857662 0.55848495 0.593 0.072 0.174 4.86e+07
2026 8909 6.00 0.45303474 0.56445990 0.799 0.131 0.305 6.55e+07
2888 13212 7.00 0.45543201 0.56919136 1.268 0.203 0.545 8.58e+07
4081 19004 8.00 0.45463409 0.56866651 1.750 0.298 0.894 1.14e+08
5420 25825 9.00 0.45542952 0.56909475 2.402 0.413 1.137 1.45e+08
7210 35043 10.00 0.45252516 0.57000994 3.259 0.578 1.550 1.87e+08
9115 44739 11.00 0.45255898 0.56967317 3.770 0.683 1.802 2.32e+08
11620 57828 12.00 0.45189046 0.57139978 5.191 0.929 2.407 2.92e+08
14466 72536 13.00 0.45238953 0.57108274 7.003 1.223 3.348 3.59e+08
17663 89572 14.00 0.45240719 0.57207873 9.136 1.396 3.967 4.36e+08
21296 108902 15.00 0.45281872 0.57219991 10.552 1.844 5.583 5.24e+08
25314 130385 16.00 0.45112099 0.57189450 14.084 2.113 6.017 6.21e+08
29834 155143 17.00 0.45115732 0.57229426 16.957 2.730 7.114 7.29e+08
34756 182139 18.00 0.45083251 0.57163400 18.797 3.550 9.990 8.52e+08
40310 212731 19.00 0.45086085 0.57198814 22.565 3.736 10.621 9.85e+08
46307 245787 20.00 0.45177690 0.57232963 26.004 4.002 12.904 1.13e+09
53342 284241 21.00 0.45117474 0.57196447 32.263 6.413 13.952 1.31e+09
60883 325769 22.00 0.45124344 0.57206281 36.818 5.710 17.391 1.49e+09
69082 370944 23.00 0.45153789 0.57212709 42.394 6.342 20.941 1.70e+09
77736 418803 24.00 0.45068535 0.57221631 47.336 7.670 22.676 1.91e+09
$ fino convergence.fin 2 | tee convergence2.dat
319 188 2.00 0.45568723 0.58041702 0.114 0.010 0.037 2.69e+07
882 546 3.00 0.45187752 0.58034789 0.164 0.029 0.090 4.69e+07
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959 593 4.00 0.45198779 0.57154752 0.166 0.031 0.094 5.11e+07
1709 1084 5.00 0.45409443 0.57267366 0.206 0.060 0.205 7.67e+07
2687 1710 6.00 0.45177463 0.57399829 0.271 0.096 0.372 1.10e+08
3522 2278 7.00 0.45235025 0.57247349 0.315 0.127 0.592 1.39e+08
4812 3142 8.00 0.45167304 0.57302810 0.404 0.190 0.870 1.84e+08
6370 4195 9.00 0.45176117 0.57269689 0.527 0.239 1.239 2.38e+08
8263 5488 10.00 0.45094817 0.57263617 0.662 0.323 1.591 3.04e+08
10330 6854 11.00 0.45212083 0.57278623 0.729 0.402 1.982 3.76e+08
13363 8909 12.00 0.45195177 0.57276954 0.897 0.549 2.870 4.81e+08
16458 11005 13.00 0.44973480 0.57266300 1.138 0.663 3.673 5.89e+08
19459 13212 14.00 0.45080242 0.57282446 1.290 0.791 4.279 6.96e+08
23544 15994 15.00 0.45012205 0.57268124 1.595 0.963 5.546 8.40e+08
27815 19004 16.00 0.45005605 0.57265601 1.808 1.218 6.813 9.91e+08
32548 22355 17.00 0.45038178 0.57264827 2.074 1.416 8.182 1.16e+09
37400 25800 18.00 0.45043822 0.57265860 2.578 1.582 9.768 1.33e+09
43387 30056 19.00 0.45100654 0.57264936 2.862 1.850 11.264 1.53e+09
50408 35043 20.00 0.45076934 0.57265230 3.353 2.280 14.063 1.78e+09
57147 39780 21.00 0.44946261 0.57265608 4.049 2.536 15.353 2.02e+09
64216 44780 22.00 0.44923081 0.57265049 4.225 2.779 17.766 2.26e+09
73053 51062 23.00 0.44937308 0.57265277 4.829 3.178 20.220 2.57e+09
82510 57828 24.00 0.44952588 0.57265069 5.629 3.804 24.085 2.90e+09
$

Figure 5 shows how non-dimensional axial and radial displacements evaluated at (b, 0, 0) and (0, 0, h) respec-
tively change with the number of nodes in the grid, for both first and second-order elements. We take number of
nodes as the abscissa because the problem size is proportional to the number of nodes—actually it is three times the
number of nodes—not the number of elements. In effect, figure 6 plots the number of elements (including both tetra-
hedra and triangles) versus the number of nodes for first and second-order grids. Of course, for the same number of
nodes, first-order grids contain far more elements—between seven and eight times more.
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Figure 5: Radial and axial displacements at two locaࢢons as funcࢢons of the number of elements of the grid.

Whilst the number of nodes defines the problem size (and thus more nodes mean that more computational
resources are needed to solve the problem), the number of elements defines the effort needed to build the stiffness
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Figure 6: Number of elements vs. number of nodes for first and second-order tetrahedra.

c17ba70 12



SP-FI-17-BM-5460-A

100 1000 10000 105

number of nodes

10−3

0.01

0.1

1

10

C
P
U

ti
m
e
[s
ec
]

Meshing time, first order

Meshing time, second order

Matrix building time, first order

Matrix building time, second order

Solving time, first order

Solving time, second order

Figure 7: CPU meࢢ (serial) needed to build and solve the sࢢffness matrix of the problem as funcࢢons of the number of nodes for first and second-
order elements. The meࢢ needed to generate the grid is not taken into account.
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Figure 8: Amount of RAM needed to solve the problem vs. number of nodes.
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(a) First-order tetrahedra, 1314× 1314

(b) Second-order tetrahedra, 1212× 1212

Figure 9: Sࢢffness matrices of a first-order and second-order formulaࢢons with a similar number of global degrees of freedom.
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matrix. Moreover, the meshing time is less for second-order because relatively bigger elements are needed to fill up
the continuous domain. Nevertheless, they have more nodes so the numerical integration in each element needed
for the matrix assembly is slightly more expensive. Overall, however, it takes less CPU time to build a second-order
stiffness matrix than a first-order one with the same number of nodes, as illustrated in figure 7. It should be noted
though, that the resulting second-order stiffness matrix is less sparse andmore connected, so morememory is needed
to solve the problem (figures 8 and 9).

4 Conclusions
We have solved a fifty-years-old problem that is still both technologically and numerically interesting. We can see
the way fino invites to tackle the case—for example using human-friendly algebraic expressions and calling a script-
friendly mesher through a macro template—is rather different than other point-and-click software packages. This
UNIX approach[6] allows a wide variety of workflows, from a completely automated execution and reporting under
a Git-based revision control system up to a web-based front-end running on the cloud.

Figure 10: Fino and Gmsh running as a back-ends on the cloud for the web-based front-end CAEplex at caeplex.com

We also got to grasp some of the insights of grid convergence and the different aspects of first and second-order
elements. We even got to see and compare the resulting stiffness matrices, which further illustrates the openness
nature of the free and open source finite-element analysis software package fino developed by Seamplex.
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