Benchmark 15-A2 calculated with milonga

Camusso, C.P.

July 28, 2016

Contents

1	Introduction	2
2	Benchmark information	2
3	Expected results	3
4	Solutions available	3
5	Solution	3
6	milonga's input file	4
7	Excercise	4
8	References	4

List of Figures

1	Depletion chains for the actinides	5
2	Depletion chains for the fission products	5
3	U numerical densities	9
4	Pu numerical densities	9
5	Np numerical densities	0
6	Am numerical densities	0
7	Cm numerical densities	1
8	135 I, 135 Xe and FP numerical densities	1
9	147 Nd, 147 Pm, $^{148, 148m}$ Pm, 149 Pm and 149 Sm numerical densities $\dots \dots \dots$	12

List of Tables

1	Fission product yield, [%] 4
2	Decay constants
3	(n,2n) Microscopic Cross Sections (Group 1 only)
4	Initial conditions
5	Microscopic cross sections, [barns]
6	Benchmark results

Copyright (c) 2016 Camusso Csar Pablo. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". [1]

1 Introduction

- 1. The benchmark ANL-7416-15A2 [2] was calculated using the milonga code.
- 2. The function of this benchmark is to test solutions of the neutronic depletion equations.
- 3. It is a infinite homogeneus nuclear reactor with isotopic concentrations given. At time zero, the neutron flux becomes nonzero.
- 4. The codes used were:

wasora 0.4.117 (14dccdd2711f+ 2016-07-18 11:38 -0300) [3]
wasora's an advanced suite for optimization & reactor analysis
rev hash 14dccdd2711f7eea767f5b6a01aa509235e385e4
last commit on 2016-07-18 11:38 -0300 (rev 272)
compiled on 2016-07-18 21:00:58 by pablo@pablo (linux-gnu x86_64)
with gcc (Debian 4.9.2-10) 4.9.2 using -O2 and linked against
GNU Scientific Library version 1.16
SUNDIALs Library version 2.5.0
GNU Readline version 6.3
wasora is copyright (C) 2009-2016 jeremy theler
licensed under GNU GPL version 3 or later.
wasora is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

5. You also can use milonga [4] because it is a plugin of wasora.

2 Benchmark information

1. Solution of isotopic depletion equations at a point with constant flux and cross sections.

$$\frac{d\mathbf{N}(t)}{dt} = \mathbf{A} \cdot \mathbf{N}(t) \tag{1}$$

where

 $\mathbf{N} =$ vector of isotopic concentrations

 $\mathbf{A} =$ net production matrix coupling isotopes

2. The general ij^{th} entry in **A** (i.e., the production rate of isotope *i* form isotope *j*) is

$$A_{ij} = Y_{ij} \sum_{g} \sigma_{fj}^{g} \Phi^{g} + \lambda_{ij} + \sum_{g} \sigma_{c_{ij}}^{g} \Phi^{g}$$
⁽²⁾

where

g = energy group index

 Y_{ij} = fission yield of isotope *i* from the fissioning of isotope *j* (Y_{ii} is defined as -1)

 σ_{fj}^g = microscopic fission cross section of isotope j in group g

 $\Phi^g =$ flux in group g

 $\lambda_{ij} = \text{decay constant}$ for production of isotope *i* from the decay of isotope *j* (λ_{ii} is the negative of the decay constant)

 $\sigma_{c_{ij}}^g$ = microscopic capture cross section in group g for isotope j that produces i ($\sigma_{c_{ii}}^g$ is the negative of the capture cross section)

- 3. Constant two-group flux:
 - 3.1 Group 1 = $6.1374 \cdot 10^{14} \frac{n}{cm^2 s}$
 - 3.2 Group $2 = 2.5078 \cdot 10^{14} \frac{n}{cm^2 s}$
- 4. Fission product yields are defined in the Table 1.
- 5. Decay constants are defined in the Table 2.
- 6. The (n,2n) microscopic cross sections are defined in the Table 3.
- 7. The initial conditions are shown in the Table 4.
- 8. Microscopic cross sections are defined in Table 5.
- 9. The α and β^+ decay were not excluded from the depletion chain, see the Figure 1 and the Figure 2. So **A** is not a triangular matrix [2].

3 Expected results

- 1. The benchmark asks the following results:
 - 1.1 Variation of isotopic concentrations with time; 50-day concentrations.
 - 1.2 Calculational statistics.

4 Solutions available

- 1. Fourth-order Runge-Kutta of depletion: 15-A2-1 [2]
- 2. Matrix exponential method and finite difference solution: 15-A2-2 [2]

5 Solution

1. The Equation 2 is written differently as:

$$A_{ij} = Y_{ij}\boldsymbol{\sigma_{fj}} \cdot \boldsymbol{\Phi} + \lambda_{ij} + \boldsymbol{\sigma_{c_{ij}}} \cdot \boldsymbol{\Phi}$$
(3)

where

$$\boldsymbol{\Phi} = \begin{bmatrix} 6.1374 \cdot 10^{14} \\ 2.5078 \cdot 10^{14} \end{bmatrix} \tag{4}$$

 σ_{fj} and $\sigma_{c_{ij}}$ for i = 13, j = 12 are (from Table 5):

$$\boldsymbol{\sigma_{f,12}} = \begin{bmatrix} 14.403 \\ 348.89 \end{bmatrix}; \quad \boldsymbol{\sigma_{c_{13,12}}} = \begin{bmatrix} 9.8658 \\ 196.77 \end{bmatrix}$$

note that $\sigma_{c_{i,12}}$ is zero when $i \neq 13$. It means that ²³⁹Pu becomes ²⁴⁰Pu when it absorbs a neutron.

- 2. The β^+ and the α decay were appended to λ . The ²⁴²Am can decay by β^+ or β^- , so its decay constant is the sum of both ones.
- 3. The (n,2n) reaction was added to $\sigma_{c_{ij}}$ in this way:

$${}^{A}Isotope + n \to {}^{A-1}Isotope + 2n \tag{5}$$

Fission product	Fissioning isotope					
	$^{235}\mathrm{U}$	$^{238}\mathrm{U}$	²³⁹ Pu	²⁴¹ Pu		
¹³⁵ I	6.17	5.78	6.93	6.26		
¹³⁵ Xe	0.24	0.22	0.27	0.24		
149 Pm	1.13	2.1	1.3	1.2		
¹⁴⁷ Nd	2.36	2.8	2.05	2.2		
Long-lived fission products	90.1	89.1	89.45	90.1		

Table 1: Fission product yield, [%]

- 4. The results are shown in the Table 6 with a comparison with one of the results from the solution 15-A2-1 [2]. Note that the units were translated into $atom/cm^3$ and FP means fission products.
- 5. The difference in the Table 6 is among the milonga results and the [2] one.
- 6. The maximum difference was in the isotope ²⁴³Cm. It is considered unimportant because the results of the isotope ²⁴²Cm, from which ²⁴³Cm appears, and the isotope ²⁴⁴Cm, in which ²⁴³Cm becomes, were similar in these results and in [2].
- 7. The time evolution of each isotope's numerical density can be seen in the Figure 3, the Figure 4, the Figure 5, the Figure 6, the Figure 7, the Figure 8, and the Figure 9.

6 milonga's input file

1. There are two keywords which are more or less new:

rel_error: It sets the relative numerical error in each variable. If it is too small, the calculation could not converge and finish in a messge error.

INITIAL_CONDITIONS_MODE FROM_VARIABLES: The IDA library needs the derivative of the vector being solved at time zero: $\dot{\mathbf{N}}(0)$. This keyword asks milonga calculate it. If it were not used, the user would have to initiate $\dot{\mathbf{N}}(0)$. If not, the calculation could not converge or give a message error.

7 Excercise

1. Print the matrices \mathbf{Y} , σ_f , λ , σ_c and \mathbf{A} .

8 References

- [1] FDL licence. https://www.gnu.org/licenses/fdl-1.2-standalone.html
- [2] ANL-7416-15A2. http://www.corephysics.com/benchmarks/anl7416_benchmark15.pdf
- [3] Wasora code. https://bitbucket.org/wasora/wasora
- [4] Milonga code. https://bitbucket.org/wasora/milonga/overview

Figure 1: Depletion chains for the actinides

Process:

Figure 2: Depletion chains for the fission products

Isotope	Emitted particle	Decay constant, s ⁻¹		
^{135}I	β^{-}	$2.874 \cdot 10^{-5}$		
$^{135}\mathrm{Xe}$	β^{-}	$2.093 \cdot 10^{-5}$		
¹⁴⁷ Nd	β^{-}	$7.228 \cdot 10^{-7}$		
$^{147}\mathrm{Pm}$	β^{-}	$8.289 \cdot 10^{-9}$		
¹⁴⁸ Pm	β^{-}	$1.488 \cdot 10^{-6}$		
^{148m}Pm	β^{-}	$1.976 \cdot 10^{-7}$		
149 Pm	β^{-}	$3.626 \cdot 10^{-6}$		
$^{237}\mathrm{U}$	β^{-}	$1.19 \cdot 10^{-6}$		
$^{239}{ m U}$	β^{-}	$4.915 \cdot 10^{-4}$		
²³⁸ Np	β^{-}	$3.82 \cdot 10^{-6}$		
²³⁹ Np	β^{-}	$3.41 \cdot 10^{-6}$		
²⁴⁰ Np	β^{-}	$1.583 \cdot 10^{-3}$		
²³⁸ Pu	α	$2.55 \cdot 10^{-10}$		
²⁴¹ Pu	β^{-}	$1.68 \cdot 10^{-9}$		
²⁴³ Pu	β^{-}	$3.886 \cdot 10^{-5}$		
241 Am	α	$5.09 \cdot 10^{-11}$		
^{242}Am	β^{-}	$9.93 \cdot 10^{-6}$		
^{242}Am	β^+	$2.03 \cdot 10^{-6}$		
^{244}Am	β^{-}	$4.44 \cdot 10^{-4}$		
$^{242}\mathrm{Cm}$	α	$4.91 \cdot 10^{-8}$		
$^{243}\mathrm{Cm}$	α	$6.86 \cdot 10^{-10}$		
$^{244}\mathrm{Cm}$	α	$1.25 \cdot 10^{-9}$		

 Table 2: Decay constants

 Table 3: (n,2n) Microscopic Cross Sections (Group 1 only)

Isotope	$\sigma[10^{-24}cm^2]$
^{235}U	0.002603
^{238}U	0.0043972
^{237}Np	0.00020144

Table 4: Initial conditions					
Isotope	Concentration $[atom/cm^3]$				
$^{235}\mathrm{U}$	$0.74003 \ 10^{20}$				
^{238}U	$0.6936 \ 10^{22}$				

Table 4:	Initial	conditions
----------	---------	------------

Isotope	Isotope	σ_{c_1}	σ_{c_2}	σ_{f_1}	σ_{f_2}	$\sigma^m_{(n, \gamma)}$	$\sigma^m_{(n, \gamma)_n}$
_	index	-	_	0 1	<i>•</i> -	(10,7)1	$(n, 1)_2$
^{234}U	1	33.575	26.368	0.42744	0	0	0
$^{235}{ m U}$	2	5.9872	26.42	12.37	148.18	0	0
^{236}U	3	16.859	1.4399	0.16664	0	0	0
$^{237}\mathrm{U}$	4	16.991	132.12	0.17139	0.55512	0	0
$^{238}{ m U}$	5	0.53258	0.73141	0.081338	0	0	0
$^{239}{ m U}$	6	0.40015	6.1613	0.27283	4.2009	0	0
²³⁷ Np	7	24.072	71.864	0.41867	0.009425	0	0
²³⁸ Np	8	5.2648	55.512	47.412	555.12	0	0
²³⁹ Np	9	26.341	16.654	0	0	0	0
²⁴⁰ Np	10	0	0	0	0	0	0
²³⁸ Pu	11	7.3125	119.91	1.5815	3.5496	0	0
²³⁹ Pu	12	9.8658	196.77	14.403	348.89	0	0
²⁴⁰ Pu	13	366.09	96.479	0.54033	0.016744	0	0
²⁴¹ Pu	14	8.0305	152.24	29.986	352.73	0	0
242 Pu	15	51.82	5.1903	0.4346	0	0	0
²⁴³ Pu	16	11.03	21.649	28.382	49.96	0	0
^{241}Am	17	50.633	392.68	1.113	2.3817	6.7486	39.543
^{242}Am	18	2.3381	0	31.137	693.9	0	0
^{242m} Am	19	20.016	444.09	108.79	1776.4	0	0
²⁴³ Am	20	91.056	24.08	0.30784	0	0	0
²⁴⁴ Am	21	0	0	26.192	403.29	0	0
^{242}Cm	22	3.1202	1.7185	0	0.83267	0	0
²⁴³ Cm	23	9.9059	69.389	92.299	194.29	0	0
²⁴⁴ Cm	24	32.129	3.6915	1.5663	0.33307	0	0
^{245}Cm	25	4.8993	82.972	37.165	537.15	0	0
¹³⁵ I	26	0	0	0	0	0	0
¹³⁵ Xe	27	243.47	1064780	0	0	0	0
¹⁴⁷ Nd	28	0	0	0	0	0	0
147 Pm	29	248.78	65.814	0	0	114.44	31.087
148 Pm	30	3368.4	420.09	0	0	0	0
$^{148\mathrm{m}}\mathrm{Pm}$	31	2921	7561.6	0	0	0	0
149 Pm	32	0	0	0	0	0	0
$^{149}\mathrm{Sm}$	33	105.85	23387.4	0	0	0	0
Fission products	34	10.376	19.429	0	0	0	0

 Table 5:
 Microscopic cross sections, [barns]

 σ_{c_1} = capture in group 1 (all captures except fission and (n,2n); includes (n, γ) to excited state, if any).

 σ_{c_2} = capture in group 2.

 $\sigma_{f_1} = \text{fission in group 1.}$

 $\sigma_{f_2} = \text{fission in group 1.}$ $\sigma_{f_2} = \text{fission in group 2.}$ $\sigma_{(n,\gamma)_1}^m = (n,\gamma) \text{ to first excited state, group 1.}$ $\sigma_{(n,\gamma)_2}^m = (n,\gamma) \text{ to first excited state, group 2.}$

Isotope	milonga maximum Δt		15-A2-1 [2]	Differe	nce [%]
	1 hour	1 day	1 min	1 hour	1 day
$^{234}\mathrm{U}$	$4.29017 \ 10^{14}$	10^{14}	$4.28817 \ 10^{14}$	$4.66 \ 10^{-2}$	1.43
$^{235}\mathrm{U}$	$5.83315 \ 10^{19}$	10^{19}	$5.83393 \ 10^{19}$	$-1.34 \ 10^{-2}$	-4.1 10 ⁻¹
$^{236}{ m U}$	$2.86193 \ 10^{18}$	10^{18}	$2.86054 \ 10^{18}$	$4.86 \ 10^{-2}$	1.48
$^{237}\mathrm{U}$	$3.5687 \ 10^{16}$	10^{16}	$3.56768 \ 10^{16}$	$2.86 \ 10^{-2}$	1.09
^{238}U	$6.91915 \ 10^{21}$	10^{21}	$6.91916 \ 10^{21}$	$-1.45 \ 10^{-4}$	-4.19 10 ⁻³
²³⁹ U	$7.18361 \ 10^{15}$	10^{15}	$7.18357 \ 10^{15}$	$5.57 \ 10^{-4}$	$-3.48 \ 10^{-3}$
²³⁷ Np	$1.04823 \ 10^{17}$	10^{17}	$1.04736 \ 10^{17}$	$8.31 \ 10^{-2}$	2.78
²³⁸ Np	$7.8119 \ 10^{14}$	10^{14}	$7.80485 \ 10^{14}$	$9.03 \ 10^{-2}$	2.96
²³⁹ Np	$1.02944 \ 10^{18}$	10^{18}	$1.02944 \ 10^{18}$	0	$-3.89 \ 10^{-3}$
²⁴⁰ Np	$1.32293 \ 10^{13}$	10^{13}	$1.32292 \ 10^{13}$	$-7.56 \ 10^{-4}$	$-3.78 \ 10^{-3}$
²³⁸ Pu	$4.42512 \ 10^{15}$	10^{15}	$4.41854 \ 10^{15}$	$1.49 \ 10^{-1}$	4.82
²³⁹ Pu	$1.05792 \ 10^{19}$	10^{19}	$1.05748 \ 10^{19}$	$4.16 \ 10^{-2}$	1.33
²⁴⁰ Pu	$9.96774 \ 10^{17}$	10^{17}	$9.95892 \ 10^{17}$	$8.86 \ 10^{-2}$	2.69
241 Pu	$3.3467 \ 10^{17}$	10^{17}	$3.34195 \ 10^{17}$	$1.42 \ 10^{-1}$	4.45
242 Pu	$1.64071 \ 10^{16}$	10^{16}	$1.63736 \ 10^{16}$	$2.05 \ 10^{-1}$	6.45
²⁴³ Pu	$1.36631 \ 10^{13}$	10^{13}	$1.36348 \ 10^{13}$	$2.08 \ 10^{-1}$	6.5
^{241}Am	$5.8755 \ 10^{14}$	10^{14}	$5.8639 \ 10^{14}$	$1.98 \ 10^{-1}$	6.29
^{242}Am	$5.2204 \ 10^{12}$	10^{12}	$5.20984 \ 10^{12}$	$2.03 \ 10^{-1}$	6.43
$^{242\mathrm{m}}\mathrm{Am}$	$5.06022 \ 10^{12}$	10^{12}	$5.04819 \ 10^{12}$	$2.38 \ 10^{-1}$	7.63
^{243}Am	$4.58325 \ 10^{14}$	10^{14}	$4.57037 \ 10^{14}$	$2.82 \ 10^{-1}$	8.46
^{244}Am	$6.37468 \ 10^{10}$	10^{10}	$6.37996 \ 10^{10}$	$-8.28 \ 10^{-2}$	8.08
^{242}Cm	$4.51091 \ 10^{13}$	10^{13}	$4.49667 \ 10^{13}$	$3.17 \ 10^{-1}$	8.5
$^{243}\mathrm{Cm}$	$7.22665 \ 10^{10}$	10^{10}	$9.50949 \ 10^{10}$	$-2.40\ 10^{+1}$	$-1.64 \ 10^{+1}$
^{244}Cm	$2.06679 \ 10^{13}$	10^{13}	$2.06737 \ 10^{13}$	$-2.81 \ 10^{-2}$	$1.01 \ 10^{+1}$
^{245}Cm	$2.43378 \ 10^{11}$	10^{11}	$2.43318 \ 10^{11}$	$2.47 \ 10^{-2}$	$1.19 \ 10^{+1}$
135 I	$8.82797 \ 10^{15}$	10^{15}	$8.82738 \ 10^{15}$	$6.68 \ 10^{-3}$	$1.53 \ 10^{-1}$
135 Xe	$9.14804 \ 10^{14}$	10^{14}	$9.14753 \ 10^{14}$	$5.58 \ 10^{-3}$	$1.52 \ 10^{-1}$
¹⁴⁷ Nd	$1.21169 \ 10^{17}$	10^{17}	$1.21154 \ 10^{17}$	$1.24 \ 10^{-2}$	$3.26 \ 10^{-1}$
147 Pm	$2.01936 \ 10^{17}$	10^{17}	$2.0181 \ 10^{17}$	$6.24 10^{-2}$	1.90
¹⁴⁸ Pm	$4.57349 \ 10^{15}$	10^{15}	$4.57029 \ 10^{15}$	$7 10^{-2}$	2.11
$^{148\mathrm{m}}\mathrm{Pm}$	$3.8698 \ 10^{15}$	10^{15}	$3.86727 \ 10^{15}$	$6.54 \ 10^{-2}$	2.09
149 Pm	$1.99734 \ 10^{16}$	10^{16}	$1.99679 \ 10^{16}$	$2.75 \ 10^{-2}$	8.26 10 ⁻¹
$^{149}\mathrm{Sm}$	$1.19809 \ 10^{16}$	10^{16}	$1.19776 \ 10^{16}$	$2.76 \ 10^{-2}$	$8.54 \ 10^{-1}$
FP	$1.46224 \ 10^{19}$	10^{19}	$1.45225 \ 10^{19}$	$6.88 \ 10^{-1}$	2.41
Final time [days]	50.027	50.862	50	$5.4 \ 10^{-2}$	1.72

 Table 6:
 Benchmark results

Figure 3: U numerical densities

Figure 9: ¹⁴⁷Nd, ¹⁴⁷Pm, ^{148, 148m}Pm, ¹⁴⁹Pm and ¹⁴⁹Sm numerical densities